
Mannose receptor targeting by mannosylated liposomes has been demonstrated for a variety of mannosylated lipid conjugates in a variety of liposome morphologies and compositions in several different in vitro and in vivo models. A very large number of publications is about using a hydrophobic derivative of mannose (4-aminophenyl alpha-D-mannopyranoside) rather than using a mannosylated lipid in clodronate liposomes. This is mainly due to the high cost and complexity of synthesizing and conjugating mannose to lipid. 4-aminophenyl alpha-D-mannopyranoside is commercially available and far less expensive than synthesizing mannose conjugated lipid.
Why mannose? Mannose is one of the carbohydrate components of many bacterial and viral cell surfaces; therefore, the ever-efficient, highly redundant immune system has evolved multiple mechanisms for identifying pathogens based on mannose recognition. The animal and plant kingdoms likewise utilize carbohydrate recognition signaling mechanisms including mannose residues. Many publications evaluate other carbohydrates as targeting mechanisms for various cell types, however mannose targeting to phagocytes appears to be one of the more specific mechanisms identified to date. Mammalian cell surface identification molecules based on mannose binding, such as the ICAM family of leukocyte adhesion molecules, target the SIGN family of mannose receptors to accomplish self-recognition in vivo.
A well-known and cited study by Umezawa & Eto [1] demonstrates that liposomes containing aminophenyl mannoside were most efficiently incorporated into the mouse brain across the blood brain barrier. The radiolabeled liposomes bearing aminophenyl-alpha-D-mannopyranoside were maximally incorporated into the mouse brain after 48 hours, whereas in the spleen and liver, these radioactivities were maximum after 12 hours. The studies also showed that liposomes were most incorporated was glial cells rather than neuronal cell. The subcellular fractionation study indicates that mannose labeled liposomes are incorporated into lysosomes rich fraction both in liver and brain.
There are five mannosylated fluorescent control liposome products (m-Fluoroliposome®) for m-Clodrosome® (mannosylated clodronate liposomes). All five mannosylated fluorescent liposomes incorporate a lipophilic dye inside their membranes. They are insoluble in water; however, their fluorescence is easily detected when incorporated into membranes. DiI, DiO, DiD, DiR and DiA cover a wide range of excitation and emission wavelengths from 300s to 900s. DiI and DiO have fluorescence excitation and emission maxima separated by about 65 nm, facilitating two-color labeling. The emission spectrum of DiA is very broad, allowing it to be detected as green, orange, or even red fluorescence depending on the optical filter used. DiI, DiO, DiD and DiR belong to the dialkylcarbocyanines family of compounds. The spectral properties of the dialkylcarbocyanines are largely independent of the lengths of the alkyl chains but are instead determined by the heteroatoms in the terminal ring systems and the length of the connecting bridge. They have extremely high extinction coefficients, moderate fluorescence quantum yields, and short excited state lifetimes in lipid environments (~1 ns). The fluorescence spectrum of each dye is shown below.
You can choose the m-Fluoroliposome® based on the type of the fluorescent equipment and filters that you use in your lab. Mannosylated clodronate liposomes cannot be made fluorescent simply due to the potential for inaccurate and/or uninterpretable data being generated by labelled m-Clodrosome®. For more information, please refer to the technical note section.


ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
荧光定量PCR原理等大家都已经很熟了,我就不细说了,主要是写一些有人问过的事,希望写的内容是大家都关心的。
普通PCR与荧光定量PCR技术区别?
简单的讲PCR技术最早是用于扩增一段特异的PCR片段,用于克隆、测序等实验,后来也将其用于样本中特异的PCR片段有无或非很粗的相对定量,而荧光定量PCR技术则是为了测定样本中特异的PCR片段相对及绝对量,是一种测定特异的PCR片段含量的方式。如测定病人样本中病原体的含量、实验样本中某一特定的mRNA的含量等。
前些年有人讲过普通PCR后,通过电泳也可以进行定量,其实是将PCR产物的定量与PCR样本中模板定量相混了。近两年没有人再讲这类的话了。
SybrGreen、Taqman、Molecularbeacon、LUX这些方法如何选择?
从实验成本来讲,SybrGreen是最好的,基本上就是普通PCR加上一点SybrGreenI荧光染料即可,其信号强度也很好,还可以进行融解曲线分析等,但缺点是只能在一个反应管内进行一种PCR反应的检测,另一个问题是非特异性扩增会影响实验结果,当然也有一些技术解决这些问题,后面会讲到。对于研究人员来讲,如果需要检测的基因很多,而每个反应管中进行一种PCR反应的检测可以满足实验要求,则SybrGreen是最好的选择。
如果需要进行多通道实验,即在一个反应管中进行2种或以上的反应,则要选择其他的方法,最常用的是Taqman、Molecularbeacon,这两种都是探针的方式,由于增加了探针的特异性,因此其扩增曲线反映的就是特异性产物的扩增曲线,不含有非特异性扩增的成分。因此商业用途的检测试剂盒大都采用这一技术,以减少非特异性产物造成错误结论的可能性。其缺点在于探针成本较高,有时设计的探针并不合适,有造成损失的可能性。并且要进行较多的实验条件的优化。这两种探针技术用于商业目的时都有专利问题,据说取得Molecularbeacon的许可权的成本相对较低,但只是据说。
另一种值得一提的是LUX探针,它也可进行多通道实验,但它没有Taqman和Molecularbeacon方法的增加探针特异性的功能,因此只能是一种折中的方案,如果不考虑多通道实验,则不如SybrGreen法.
鼓励性加分
荧光定量PCR原理等大家都已经很熟了,我就不细说了,主要是写一些有人问过的事,希望写的内容是大家都关心的。
普通PCR与荧光定量PCR技术区别?
简单的讲PCR技术最早是用于扩增一段特异的PCR片段,用于克隆、测序等实验,后来也将其用于样本中特异的PCR片段有无或非很粗的相对定量,而荧光定量PCR技术则是为了测定样本中特异的PCR片段相对及绝对量,是一种测定特异的PCR片段含量的方式。如测定病人样本中病原体的含量、实验样本中某一特定的mRNA的含量等。
前些年有人讲过普通PCR后,通过电泳也可以进行定量,其实是将PCR产物的定量与PCR样本中模板定量相混了。近两年没有人再讲这类的话了。
SybrGreen、Taqman、Molecularbeacon、LUX这些方法如何选择?
从实验成本来讲,SybrGreen是最好的,基本上就是普通PCR加上一点SybrGreenI荧光染料即可,其信号强度也很好,还可以进行融解曲线分析等,但缺点是只能在一个反应管内进行一种PCR反应的检测,另一个问题是非特异性扩增会影响实验结果,当然也有一些技术解决这些问题,后面会讲到。对于研究人员来讲,如果需要检测的基因很多,而每个反应管中进行一种PCR反应的检测可以满足实验要求,则SybrGreen是最好的选择。
如果需要进行多通道实验,即在一个反应管中进行2种或以上的反应,则要选择其他的方法,最常用的是Taqman、Molecularbeacon,这两种都是探针的方式,由于增加了探针的特异性,因此其扩增曲线反映的就是特异性产物的扩增曲线,不含有非特异性扩增的成分。因此商业用途的检测试剂盒大都采用这一技术,以减少非特异性产物造成错误结论的可能性。其缺点在于探针成本较高,有时设计的探针并不合适,有造成损失的可能性。并且要进行较多的实验条件的优化。这两种探针技术用于商业目的时都有专利问题,据说取得Molecularbeacon的许可权的成本相对较低,但只是据说。
另一种值得一提的是LUX探针,它也可进行多通道实验,但它没有Taqman和Molecularbeacon方法的增加探针特异性的功能,因此只能是一种折中的方案,如果不考虑多通道实验,则不如SybrGreen法.