PCDTBT is one of the next generation donor materials developed for organic photovoltaics to produce better efficiencies and lifetimes. The key properties of PCDTBT result from the lower HOMO/LUMO levels which lead to advantages over standard organic photovoltaic materials of increased open circuit voltage, longer wavelength absorption and improved stability under ambient conditions.
The lower lying HOMO level of PCDTBT makes it much more stable under ambient conditions and therefore an ideal candidate to use with large area deposition methods such as ink-jet printing, spray coating and blade coating. However, for these deposition techniques, uniform, aggregate free coatings are essential and so lower molecular weights are often desirable.
Power conversion efficiencies of up to 6.7% have been achieved in our own labs using PCDTBT (M137) in a standard reference architecture using PEDOT:PSS as a hole interface and calcium/aluminium as an electron interface. By using advanced interface materials and antireflection coatings PCDTBT has also achieved up to 7.2% in the literature [1].
For information on processing please see our specific fabrication details for PCDTBT below, general fabrication video, general fabrication guide, optical modelling paper on our standard architecture [2], or email us for any additional help and support.
Luminosyn™ PCDTBT
Luminosyn™ PCDTBT is now available.
High efficiencyPower conversion efficiencies of up to 6.7% having been achieved in our own lab
High purityPCDTBT is purified by soxhlet extraction with methanol, hexane and chlorobenzene under argon atmosphere
Batch-specific GPC dataHave confidence in what you are ordering; batch-specific GPC data for your thesis or publications
Large quantity ordersPlan your experiments with confidence with polymers from the same batch
General Information
| Full name | Poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4",7"-di-2-thienyl-2",1",3"-benzothiadiazole)] |
| Synonyms | PCDTBT |
| CAS number | 958261-50-2 |
| Chemical formula | (C43H47N3S3)n |
| Molecular weight | See Batch Details for information |
| HOMO / LUMO | HOMO = -5.4 eV, LUMO = -3.6 eV |
| Solubility | Chloroform, chlorobenzene, dichlorobenzene and trichlorobenzene |
| Classification / Family | Polycarbazoles, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic photovoltaics, Polymer solar cells, OLEDs, OFETs and Perovskite solar cells |
Chemical Structure

Usage Datasheet
For high performance organic photovoltaics with efficiencies of 6% and above poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4",7"-di-2-thienyl-2",1",3"-benzothiadiazole)] (PCDTBT). We have achieved efficiencies of 6.7% in our own labs using a standard reference architecture of PEDOT:PSS as a hole interface and calcium/aluminium as an electron interface (see below for fabrication details). Our paper published in Nature Scientific Reports titled Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics explores the effect and optimisation of molecular weight.



Solution Details
Ossila’s reference devices were made by dissolving PCDTBT (M137) at 4 mg/ml in anhydrous chlorobenzene using a stir-bar and hotplate at 80°C overnight. This was then mixed with Ossila’s dry 95%/5% C70 PCBM (M113) powder in a 1:4 blend ratio to produce an overall concentration of 20 mg/ml.The blend solution was heated with a stir-bar on a hotplate at 80°C for 2 hours before cooling to room temperature over 10 minutes and filtering with a 0.45 μm PTFE filter immediately prior to spinning at 700 rpm to give a film of approx. 70 nm.
Device Structure
Glass / ITO / PEDOT:PSS / PCDTBT:PC70BM / Ca / Al
Ossila’s pre-patterned ITO substrates (S171) with 100 nm (20 Ω/square) ITO were cleaned with the following procedure:
- 5 minutes sonication in hot 1% Hellmanex III
- 2x hot dump rinses, 1x cold dump rinse
- 5 minutes sonication in warm IPA
- 3x cold dump rinses
- 5 minutes sonication in hot 10% NaOH solution
- 2x cold dump rinses then stored in DI water until use
- N2 blow dry before spin-coating the hole transport layer (no further cleaning or surface treatment required)
PEDOT:PSS (AI4083 from Ossila) was filtered through a 0.45 µm PES filter (C2009S1) before spin coating at 6000 rpm in air to produce a layer 30 nm thick. The coated substrates were then stored on a hotplate at 150°C before transfer into a glove box and a further bake of 150°C for 10 mins to remove any residual moisture.The active ink was spin cast and the cathode strip wiped clean using chlorobenzene before transfer to an evaporator where 2.5 nm of Ca followed by 100 nm of Al were deposited at <10-6 mbar. The substrates were then annealed at 80°C for 15 mins on a hotplate in the glove box before protecting with the Ossila encapsulation system. Measurement was performed under ambient conditions using a Newport 92251A AM1.5 100 mW/cm2 solar simulator and NREL certified silicon reference cell.
As Featured In...

All-Inkjet-Printed, All-Air-Processed Solar Cells, Sirringhaus, McNeill et al., Advanced Energy Materials, 1400432, 2014
"Our in depth study on PCDTBT:PC70BM layers demonstrated that inkjet-printed blend layers exhibited similar nanoscale structure and excited state dynamics to spin-coated layers."
MSDS Documentation
PCDTBT MSDS sheet
Pricing
| Batch | Quantity | Price |
| M1311 | 100 mg | £198.00 |
| M1311 | 250 mg | £396.00 |
| M1311 | 500 mg | £677.00 |
| M1311 | 1 g | £1090.00 |
| M1311 | 2 g | £1990.00 |
| M1311 | 5 g / 10 g* | Please enquire |
*for 5 - 10 grams order quantity, the lead time is 4-6 weeks.
Batch Details
The below materials are in stock for immediate dispatch to research institutions worldwide.
In general, PCDTBT is used at lower concentrations than P3HT (typically 4 to 7 mg/ml) and higher blend ratios (1:4 PCDTBT:PC70BM) and as such 100 mg of PCDTBT will make around 500 devices on Ossila"s standard ITO substrates (20 x 15 mm) even assuming 50% material loss in filtration and solution preparation. Please note that as the higher molecular weight fractions have a lower yield we are now operating differential pricing policy. See below for more details on separation, yield and differential pricing.
| Batch | Mw | Mn | PDI | Stock Info |
| M1311 | 34,900 | 16,200 | 2.15 | In stock |
Literature and References
Please note that Ossila has no formal connection to any other authors or institutions in these references.
- Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Y. Sun et al., Advanced Materials, 23, 2226-2230 (2011)
- Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode, D.C. Watters et al., Organic Electronics, 13, 1401-1408 (2012)
- Efficient perovskite photovoltaic devices using chemically doped PCDTBT as a hole-transport material, M. Wong-Stringer et al., J. Mater. Chem. A, 2017, 5, 15714-15723; DOI: 10.1039/C7TA03103C.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
实验需要请问有没有养THP-1细胞的同仁?能否寄一皿我,我在广州南方医科大学,不胜感激!
激光共聚焦的看活细胞皿哪里买呢
想问下各位大神,本人用皿养的PC-9GR细胞突然有大片飘起,也并没有成团状飘起,求解决方法?
如题~
已经基本养好了贴壁的原代细胞了,准备鉴定了,看到好多都在说细胞爬片的问题,我可以不做爬片直接在皿里操作吗?具体需要注意些什么呢?感谢各位大神
ps:大皿和6孔板里细胞密度、培养条件等等都几乎一样。
我看园子里有人提过类似的问题,但还没人给出答案,希望有经验或有想法的战友帮忙分析分析啊~谢谢!
同学说传代必须是一皿传多皿,一皿传一皿就不算传代~求高手指点~~
传代后5天,依然没有长满,怕影响活力,想传代和冻存,不知这样是否可以??
做细胞实验快半年了,一直都还挺顺的,这次五一放完假回来,复苏一支HK2,操作都跟以前一样,没想到出了好多问题:
冻存方法:包裹棉花直接-80℃过夜,第二天转移到液氮
冻存时间:1个半月前冻存的细胞,密度保证没问题,冻存前状态也好
复苏方法:液氮取出后37℃水浴,约2分钟溶解,加入6倍体积的完全培养基,800转离心5分钟,弃去上清,1ml完全培养基重悬,转移入培养皿(进口一次性塑料培养大皿),补足完全培养基,培养箱培养
第二天看细胞全都没贴壁,但是也没死,聚集成团装飘着,没有污染。不想重新离心加重机械损伤,就一直试试看的心态放在培养箱里养着了。又重新复苏一支,还是一样的结果,全飘着没贴壁。不死心,就往前面复苏的那一皿里直接加了1ml的血清,相当于18%的血清比例,过了一天去看,这下细胞都贴壁了。没有另外添加血清的那一皿就还是没贴壁。
另外还有一支以前复苏的HK2,也是一样的方法复苏的,那次复苏很好,细胞基本没什么死的,也都贴壁了,养在皿里状态也不错,但是拿来铺板就还是不贴壁,同样的培基(10%血清),铺板就一个不贴,皿里就都可以贴上。
求助各位战友:
1、复苏不贴壁是为什么?
2、增加血清比例能使复苏的细胞贴壁,这样的细胞是不是可以认为状态并不好,以后的培养是不是要一直这么高比例的血清?还是可以培养一段时间逐步减少血清比例?
3、仍然是10%血清,为什么铺板就不贴壁,而皿里的就没事?是不是铺板的时候也要增加血清比例呢?那在板里干预的过程中是不是要一直保持高比例的血清培养?
4、我的冻存及复苏方法是否有错?我觉得我的HK2从形态、生长速度上来说状态应该是不错的,而且我已经更换了全新的培基、血清和双抗,重新配置了完全培养基,不知道为什么会出现这种不贴壁的问题
拜托各位集思广益,细胞实验已经为了这个不贴壁的问题停滞快2周,心急如焚啊,拜托各位!

