
DCJTB, a dicyanomethylene-4H-pyran (DCM) derivative, is one of the most promising dopant materials. It has been widely used in red and white OLEDs.
With four methyl bulky substituents on the julolidine moiety, and tert-butyl group on the pyran moiety of DCM backbone stucture, DCJTB can efficiently prevent concentration quenching between the emitting materials, which leads to improved device electroluminescence efficiencies.
DCJTB has also been used as an interface material between the dye and acceptor in small molecule organic heterojunction solar cells, retarding the charge recombinations between the donor and the acceptor.
General Information
CAS number | 200052-70-6 |
Full name | 4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran |
Chemical formula | C30H35N3O |
Molecular weight | 453.62 g/mol |
Absorption | λmax 502 nm in THF |
Fluorescence | λmax 602 nm in THF |
HOMO/LUMO | HOMO = 5.4 eV, LUMO = 3.2 eV [1] |
Synonyms | 4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran, 2-tert-Butyl-4-(dicyanomethylene)-6-[2-(1,1,7,7-tetramethyljulolidin-9-yl)vinyl]-4H-pyran |
Classification / Family | Red dopant materials, OLED red emitters, TADF materials. |
Product Details
Purity | Unsublimed > 98.0% (HPLC) |
Melting point | n/a |
Appearance | Deep red crystals/powder |
Chemical Structure

Device Structure(s)
Device structure | ITO/MoO3 (3 nm)/NPB (20 nm)/TCTA (8 nm)/TCTA:3P-T2T (1:1): 1 wt% DCJTB (15 nm)/3P-T2T (45 nm)/LiF (1 nm)/Al [1] |
Colour | Red ![]() |
Max. Power Efficiency | 21.5 lm W−1 |
Max. Current Efficiency | 22.7 cd/A |
Max. EQE | 10.15% |
Device structure | ITO/MoO3 (3 nm)/mCBP (20 nm)/mCBP:PO-T2T:0.4 wt.% DCJTB (20 nm)/PO-T2T (40 nm)/LiF (0.8 nm)/Al [2] |
Colour | White ![]() |
Max. Power Efficiency | 10.39 lm W−1 |
Max. Current Efficiency | 13.25 cd/A |
Max. EQE | 6.16% |
Device structure | ITO/HAT-CN (10 nm)/TAPC (55 nm)/TCTA (10 nm)/TCTA:B4PyMPM:2 wt% 4CzIPN:0.5 wt% DCJTB (30 nm)/B4PYMPM (55 nm)/Liq (2 nm)/Al (110 nm) [3] |
Colour | Orange ![]() |
Max. Power Efficiency | 26.3 lm W−1 |
Max. Current Efficiency | 23.0 cd/A |
Max. EQE | 12.3% |
Device structure | ITO/PEDOT:PSS (35 nm)/26DCzPPy:TCTA:10 wt % DMAC-TRZ/1 wt % DCJTB (45 nm)/TmPyPB (50 nm)/CsF(1 nm)/Al [2] |
Colour | White ![]() |
Max. Power Efficiency | 10.3 lm W−1 |
Max. Current Efficiency | 16.4 cd/A |
Max. EQE | 6.58% |
Pricing
Grade | Order Code | Quantity | Price |
Unsublimed (>98% purity) | M2177B1 | 250 mg | £221.00 |
Unsublimed (>98% purity) | M2177B1 | 500 mg | £359.00 |
Unsublimed (>98% purity) | M2177B1 | 1 g | £590.00 |
MSDS Documentation
DCJTB MSDS sheet
Literature and Reviews
- Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host, B. Zhao et al., Sci. Rep., 5, 10697 (2015); DOI: 10.1038/srep10697.
- Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant, T. Zhang et al., Sci. Rep., 5, 10234 (2015); DOI: 10.1038/srep10234.
- Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes, D. Li et al., J. Mater. Chem. C, 7, 977 (2019); DOI: 10.1039/c8tc05141k.
- Development of a Highly Efficient Hybrid White Organic-LightEmitting Diode with a Single Emission Layer by Solution Processing, J. Wu et al., ACS Appl. Mater. Interfaces, 10, 4851−4859 (2018); DOI: 10.1021/acsami.7b14695.
- Simultaneous enhancement of photo- and electroluminescence in white organic light emitting devices by localized surface plasmons of silver nanoclusters, J. Yu et al., Nanotechnology 28, 085206 (2017); doi:10.1088/1361-6528/aa56e3.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
ps:大皿和6孔板里细胞密度、培养条件等等都几乎一样。
我看园子里有人提过类似的问题,但还没人给出答案,希望有经验或有想法的战友帮忙分析分析啊~谢谢!
同学说传代必须是一皿传多皿,一皿传一皿就不算传代~求高手指点~~
传代后5天,依然没有长满,怕影响活力,想传代和冻存,不知这样是否可以??
所谓上皿式指的是称量盘在支架上面;而称量盘吊挂在支架下面的为下皿式。
目前使用较为广泛的是上皿式电子天平。
想问下各位大神,本人用皿养的PC-9GR细胞突然有大片飘起,也并没有成团状飘起,求解决方法?
如题~
已经基本养好了贴壁的原代细胞了,准备鉴定了,看到好多都在说细胞爬片的问题,我可以不做爬片直接在皿里操作吗?具体需要注意些什么呢?感谢各位大神
做细胞实验快半年了,一直都还挺顺的,这次五一放完假回来,复苏一支HK2,操作都跟以前一样,没想到出了好多问题:
冻存方法:包裹棉花直接-80℃过夜,第二天转移到液氮
冻存时间:1个半月前冻存的细胞,密度保证没问题,冻存前状态也好
复苏方法:液氮取出后37℃水浴,约2分钟溶解,加入6倍体积的完全培养基,800转离心5分钟,弃去上清,1ml完全培养基重悬,转移入培养皿(进口一次性塑料培养大皿),补足完全培养基,培养箱培养
第二天看细胞全都没贴壁,但是也没死,聚集成团装飘着,没有污染。不想重新离心加重机械损伤,就一直试试看的心态放在培养箱里养着了。又重新复苏一支,还是一样的结果,全飘着没贴壁。不死心,就往前面复苏的那一皿里直接加了1ml的血清,相当于18%的血清比例,过了一天去看,这下细胞都贴壁了。没有另外添加血清的那一皿就还是没贴壁。
另外还有一支以前复苏的HK2,也是一样的方法复苏的,那次复苏很好,细胞基本没什么死的,也都贴壁了,养在皿里状态也不错,但是拿来铺板就还是不贴壁,同样的培基(10%血清),铺板就一个不贴,皿里就都可以贴上。
求助各位战友:
1、复苏不贴壁是为什么?
2、增加血清比例能使复苏的细胞贴壁,这样的细胞是不是可以认为状态并不好,以后的培养是不是要一直这么高比例的血清?还是可以培养一段时间逐步减少血清比例?
3、仍然是10%血清,为什么铺板就不贴壁,而皿里的就没事?是不是铺板的时候也要增加血清比例呢?那在板里干预的过程中是不是要一直保持高比例的血清培养?
4、我的冻存及复苏方法是否有错?我觉得我的HK2从形态、生长速度上来说状态应该是不错的,而且我已经更换了全新的培基、血清和双抗,重新配置了完全培养基,不知道为什么会出现这种不贴壁的问题
拜托各位集思广益,细胞实验已经为了这个不贴壁的问题停滞快2周,心急如焚啊,拜托各位!
激光共聚焦的看活细胞皿哪里买呢

