![StressMarq/Anti-Cav3.1 Antibody [S178A-9]/SMC-405D-APC/100-µg](images/StressMarq/201710/SMC-405_Cav31_Antibody_S178A-9_ICC-IF_Human_SK-N-BE-Cells-Human-Neuroblastoma-cells_60X_Composite_1-150x150.png)
Overview:
Product Name | Cav3.1 Antibody | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Mouse Anti-Mouse Cav3.1 Monoclonal IgG1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Species Reactivity | Human, Mouse, Rat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applications | WB, IHC, ICC/IF | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antibody Dilution | WB (1:1000), ICC/IF (1:100);optimal dilutions for assays should be determined by the user. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Host Species | Mouse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Immunogen Species | Mouse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Immunogen | Fusion protein amino acids 2052-2172 (cytoplasmic C-terminus) of mouse Cav3.1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concentration | 1 mg/ml | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conjugates |
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
StreptavidinProperties:
Streptavidin Datasheet BiotinProperties:
Biotin Datasheet HRP (Horseradish peroxidase)Properties:
HRP Datasheet AP (Alkaline Phosphatase)Properties:
AP Datasheet
|
Properties
Storage Buffer | PBS pH7.4, 50% glycerol, 0.09% sodium azide |
Storage Temperature | -20ºC |
Shipping Temperature | Blue Ice or 4ºC |
Purification | Protein G Purified |
Clonality | Monoclonal |
Clone Number | S178A-9 |
Isotype | IgG1 |
Specificity | Detects ~ |
Cite This Product | StressMarq Biosciences Cat# SMC-405, RRID: AB_11232605 |
Certificate of Analysis | 1 µg/ml of SMC-405 was sufficient for detection of Cav3.1 in 20 µg of rat brain membrane lysate and assayed by colorimetric immunoblot analysis using goat anti-mouse IgG:HRP as the secondary antibody. |
Biological Description
Alternative Names | CACNA1G Antibody, CaV T1 Antibody, Cav3 1 Antibody, cav3 1c Antibody, KIAA1123 Antibody, MGC117234 Antibody, NBR13 Antibody, voltage gated calcium channel cav3.1 Antibody, calcium channel voltage dependent alpha 1G subunit Antibody, calcium channel voltage dependent T type alpha 1G subunit Antibody, calcium channel voltage dependent T type alpha1G subunit Antibody, voltage dependent calcium channel alpha 1G subunit isoform 11 Antibody, voltage dependent T type calcium channel subunit alpha 1G Antibody, Voltage gated calcium channel subunit alpha Cav3 1 Antibody |
Research Areas | Calcium Channels, Ion Channels, Neuroscience, Voltage-Gated Calcium Channels |
Cellular Localization | Membrane |
Accession Number | NP_001106284.1 |
Gene ID | 12291 |
Swiss Prot | Q9WUT2 |
Scientific Background | Calcium channel CaV3.1 (a1G) is a low-voltage-activated T-type calcium channel. Such T-type channels are expressed throughout the body. In the heart, they may be involved in pacemaker current. In neurons, these channels may play a secondary pacemaker role (1). With the ubiquitous expression, it is not surprising that alterations in channel function have been implicated in disease. Drugs that act to block T-type calcium channels are used as anti-hypertensives, antiepileptic's, and blocking of T-type calcium channels may be involved in the action of some anesthetics and antipsychotics as well (1). Much remains to be determined about the precise cellular localization, in vivo physiological roles, roles in disease states and possible routes to modulate their structure/function to ameliorate effects of disease. |
References | 1. Perez-Reyes E. (2003). Physiol. Rev., 83: 117-161. |
Product Images

Western Blot analysis of Rat brain membrane lysate showing detection of Cav3.1 Calcium Channel protein using Mouse Anti-Cav3.1 Calcium Channel Monoclonal Antibody, Clone S178A-9 (SMC-405). Primary Antibody: Mouse Anti-Cav3.1 Calcium Channel Monoclonal Antibody (SMC-405) at 1:1000.

Immunocytochemistry/Immunofluorescence analysis using Mouse Anti-Cav3.1 Monoclonal Antibody, Clone S178A-9 (SMC-405). Tissue: SK-N-BE Cells (Human Neuroblastoma cells). Species: Human. Fixation: 4% Formaldehyde for 15 min at RT. Primary Antibody: Mouse Anti-Cav3.1 Monoclonal Antibody (SMC-405) at 1:100 for 60 min at RT. Secondary Antibody: Goat Anti-Mouse ATTO 488 at 1:200 for 60 min at RT. Counterstain: Phalloidin Texas Red F-Actin stain; DAPI (blue) nuclear stain at 1:1000, 1:5000 for 60 min at RT, 5 min at RT. Localization: Cell Membrane, Membrane, Cytoplasm, Nucleoplasm. Magnification: 60X.
Product Citations (0)
Currently there are no citations for this product.
APC (Allophycocyanin) | ||
Overview:
APC Datasheet | ![]() | Optical Properties: λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
是否可以理解为纯化水得PH范围为6.3-7.6?能否直接用pH计测量?谢谢!
因为是考察不同PH对药物的影响,样品又不好改变其PH值,这种情况怎么办?希望有经验的高手指教。
我的流动相是甲醇-水(90:10)
谢谢赐教!
请进子版按格式发贴,自行修改,谢谢。
常用流动相加酸碱后PH的总结,希望大家能够提供一点自己测过的结果,谢谢先
两个CEX方法A和B测定同一单抗,结果碱性峰比例差不多,酸性峰比例相差约7%,相应主峰也差了7%左右。
具体来说,A方法酸性峰高,主峰低,碱性峰稍微低点;B方法酸性峰低,主峰高,碱性峰稍微高点;另外也做了CIEF,结果呢和A方法更接近。
仔细比较起来,AB两个方法的峰性和数量差不多,就不知道为什么会有这么大的差异。两个方法一个用的WCX柱-磷酸缓冲液,一个用SCX柱-MES缓冲液
大家帮我分析下:
1.两个方法哪个方法更准确,是以酸性峰高的为准还是什么?为什么?
2.这显著差异是由方法造成,具体原因是什么?柱子?
3.CIEF的结果和A方法更接近,是不是可以由此证明A方法更好或者CIEF的方法更好(因为CIEF更快更方便)?
欢迎讨论~
纠正下,A方法用的是Tosoh的柱子,B方法用的是SCX柱。TOSOH的柱子是7um的填料,10cm长。SCX是10um的填料。我本人TOSOH的阳离子柱子用的很少,这次信手用用,结果发现差异很大
那我现在就考虑,在以后方法开发过程中,除了通过流动相pH和组成、梯度、柱子选择来获得样品主峰和酸碱性的最大分离,还要关注各峰比例。因为之前比较方法好坏都只看分离度,尤其是主峰和邻近峰的分离度,获得最大分离度,自然可以做到主峰尽可能纯,但从未认真比较过各峰比例。这是一个大疏忽吧!
另外,CIEF和CEX方法原理还是有点差异的,所以分的是不同的异质体,原液放行两个方法肯定是都要做的。问题就是在早期细胞株筛选和工艺开发阶段,哪个方法才是又快又准。CIEF(iCE280)一般15分钟一个样,比CEX快多了。如果CIEF测得主峰要低于CEX结果,是不是真的完全可以取代CEX呢?CEX分离出的峰远比CIEF的多!
欢迎大家继续讨论~
1、弱酸和它的盐(如:HAc---NaAc)的水溶液组成;
2、弱碱和它的盐(如:NH3·H2O---NH4Cl)的水溶液组成;
3、多元弱酸的酸式盐及其对应的次级盐(如:NaH2PO4---Na2HPO4)的水溶液组成。
酸碱缓冲溶液的选型一般应根据具体情况进行选择。缓冲酸性可选用碱性缓冲液,缓冲酸性可采用碱性缓冲液。常用作缓冲溶液的酸类由弱酸及其共轭酸盐组合成的溶液具有缓冲作用。生化实验室常用的缓冲系主要有磷酸、柠檬酸、碳酸、醋酸、巴比妥酸、Tris(三羟甲基氨基甲烷)等系统,生化实验或研究工作中要慎重地选择缓冲体系,因为有时影响实验结果的因素并不是缓冲液的pH值,而是缓冲液中的某种离子。如硼酸盐、柠檬酸盐、磷酸盐和三羟甲基甲烷等缓冲剂都可能产生不需要的化学反应。
【酸碱缓冲溶液】由弱酸及其盐、弱碱及其盐组成的混合溶液,能在一定程度上抵消、减轻外加强酸或强碱对溶液酸碱度的影响,从而保持溶液的pH值相对稳定。这种溶液称为酸碱缓冲溶液。
1.直接用固体磷酸钠配制成50mM的磷酸钠溶液,再调pH到7.4;(我们试着用这个做了下,发现挂不上柱)
2.配置磷酸钠盐缓冲液:按NaH2PO4:Na2HPO4以19:81的摩尔比配制成pH7.4的缓冲液?(附一张百度出来的配方
)
3.如果是磷酸钠盐缓冲液,可以直接将50mM的NaH2PO4的水溶液用NaOH调成pH7.4吗?
再者,2和3这两个方法配制的磷酸钠盐缓冲液有什么区别?最终效果是一样的吗?如果不一样,有什么理论的知识支撑呢?个人感觉是分析化学中酸碱理论中的缓冲液那里的知识。求帮忙解答这些疑问。
另外,我还想问一下,pH对于Ni柱对His-tagged的蛋白的分离纯化影响大吗?是怎么影响的?谢谢大家了!
由弱酸及其盐、弱碱及其盐组成的混合溶液,能在一定程度上抵消、减轻外加强酸或强碱对溶液酸碱度的影响,从而保持溶液的pH值相对稳定。这种溶液称为缓冲溶液。

