Overview:
| Product Name | SHANK (pan) Antibody | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Description | Mouse Anti-Rat SHANK (pan) Monoclonal IgG1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Species Reactivity | Human, Mouse, Rat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Applications | WB, IHC, IP, ICC/IF, AM | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Antibody Dilution | WB (1:1000), IHC (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Host Species | Mouse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Immunogen Species | Rat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Immunogen | Fusion protein amino acids 84-309 of rat Shank2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Concentration | 1 mg/ml | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Conjugates |
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
StreptavidinProperties:
Streptavidin Datasheet Biotin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| R-PE (R-Phycoerythrin) | ||
Overview:
R-PE Datasheet | ![]() | Optical Properties: λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
Properties
| Storage Buffer | PBS pH7.4, 50% glycerol, 0.09% sodium azide |
| Storage Temperature | -20ºC |
| Shipping Temperature | Blue Ice or 4ºC |
| Purification | Protein G Purified |
| Clonality | Monoclonal |
| Clone Number | S23b-49 |
| Isotype | IgG1 |
| Specificity | Detects ~160kDa. Recognizes Shank1, 2 and 3. |
| Cite This Product | StressMarq Biosciences Cat# SMC-327, RRID: AB_2301756 |
| Certificate of Analysis | 1 µg/ml of SMC-327 was sufficient for detection of Shank1-4 in 10 µg of rat brain lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody. |
Biological Description
| Alternative Names | Cortactin binding protein 1 Antibody, Cortactin SH3 domain-binding protein Antibody, Cortactin-binding protein 1 Antibody, CortBP1 Antibody, CTTNBP1 Antibody, GKAP/SAPAP interacting protein Antibody, GKAP/SAPAP-interacting protein Antibody, KIAA1022 Antibody, Proline rich synapse associated protein 1 Antibody, Proline-rich synapse-associated protein 1 Antibody, ProSAP1 Antibody, SH3 and multiple ankyrin repeat domains protein 2 Antibody, SHAN2_RAT Antibody, SHANK Antibody, Shank2 Antibody, SPANK-3 Antibody |
| Research Areas | Cell Markers, Cell Signaling, Cell Structure, Neuron Markers, Neuroscience, Post-Synaptic Markers, Postsynaptic Markers, Scaffold Proteins, Scaffolds |
| Cellular Localization | Cytoplasm, Cell Junction, Cell projection, Growth cone, Postsynaptic cell membrane, Postsynaptic density, Synapse |
| Gene ID | 171093 |
| Swiss Prot | Q9QX74 |
| Scientific Background | Shank proteins make up a family of scaffold proteins identified through their interaction with a variety of membrane and cytoplasmic proteins (1). Shank proteins at postsynaptic sites of excitatory synapses play roles in signal transmission into the postsynaptic neuron. Studies suggest that Shank2 is expressed in the neurons of the developing retina, and could play a role in the neuronal differentiation of the developing retina (2). Other recent studies suggest that the disruption of glutamate receptors at the Shank postsynaptic platform could contribute to the destruction of the postsynaptic density, which underlies the synaptic dysfunction and loss in Alzheimer’s disease (3). |
| References |
1. Sheng M., and Kim E. (2000) Journal of Cell Science. 113: 1851-1856. 2. Kim J.H., et al. (2009) Exp Mol Med. 41(4): 236-242. 3. Gong Y., et al. (2009) Brain Res. 1292: 191-198. |
Product Images
Western Blot analysis of Rat brain membrane lysate showing detection of SHANK protein using Mouse Anti-SHANK Monoclonal Antibody, Clone S23b-49 (SMC-327). Load: 15 µg. Block: 1.5% BSA for 30 minutes at RT. Primary Antibody: Mouse Anti-SHANK Monoclonal Antibody (SMC-327) at 1:1000 for 2 hours at RT. Secondary Antibody: Sheep Anti-Mouse IgG: HRP for 1 hour at RT.
Immunocytochemistry/Immunofluorescence analysis using Mouse Anti-SHANK (pan) Monoclonal Antibody, Clone S23b-49 (SMC-327). Tissue: SK-N-BE Cells (Human Neuroblastoma cells). Species: Human. Fixation: 4% Formaldehyde for 15 min at RT. Primary Antibody: Mouse Anti-SHANK (pan) Monoclonal Antibody (SMC-327) at 1:100 for 60 min at RT. Secondary Antibody: Goat Anti-Mouse ATTO 488 at 1:200 for 60 min at RT. Counterstain: Phalloidin Texas Red F-Actin stain; DAPI (blue) nuclear stain at 1:1000, 1:5000 for 60 min at RT, 5 min at RT. Localization: Cytoplasm . Magnification: 60X.
Product Citations (3)
Western Blot
Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.
Nagura, H. et al. (2012) Mol Brain. 5 (43).
PubMed ID: 23268962 Reactivity Mouse Applications: Western Blot
Other Citations
Biomarker Analysis with Grating Coupled Surface Plasmon Coupled Fluorescence.
Mendoza, A., Dias, J.A., Zeltner, T. and Lawrence, D.A. (2014) J Adv Bio & Biotech. 1(1): 1-22.
PubMed ID: N/A Reactivity Human Applications: Antibody Microarray
Biomarker Analysis with Grating Coupled Surface Plasmon Coupled Fluorescence.
Mendoza, A., Dias, J.A., Zeltner, T. and Lawrence, D.A. (2014) J Adv Bio & Biotech. 1(1): 1-22.
PubMed ID: N/A Reactivity Mouse Applications: Antibody Microarray
| ATTO 488 | ||
Overview:
ATTO 488 Datasheet | ![]() | Optical Properties: λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
常用流动相加酸碱后PH的总结,希望大家能够提供一点自己测过的结果,谢谢先
1.直接用固体磷酸钠配制成50mM的磷酸钠溶液,再调pH到7.4;(我们试着用这个做了下,发现挂不上柱)
2.配置磷酸钠盐缓冲液:按NaH2PO4:Na2HPO4以19:81的摩尔比配制成pH7.4的缓冲液?(附一张百度出来的配方
)
3.如果是磷酸钠盐缓冲液,可以直接将50mM的NaH2PO4的水溶液用NaOH调成pH7.4吗?
再者,2和3这两个方法配制的磷酸钠盐缓冲液有什么区别?最终效果是一样的吗?如果不一样,有什么理论的知识支撑呢?个人感觉是分析化学中酸碱理论中的缓冲液那里的知识。求帮忙解答这些疑问。
另外,我还想问一下,pH对于Ni柱对His-tagged的蛋白的分离纯化影响大吗?是怎么影响的?谢谢大家了!
有了源数据之后把源数据按照大小排列,
选中源数据区域-->ALT+A1-->选中图标区右键-->更改图表类型-->散点图
因为是考察不同PH对药物的影响,样品又不好改变其PH值,这种情况怎么办?希望有经验的高手指教。
我的流动相是甲醇-水(90:10)
谢谢赐教!
请进子版按格式发贴,自行修改,谢谢。
由弱酸及其盐、弱碱及其盐组成的混合溶液,能在一定程度上抵消、减轻外加强酸或强碱对溶液酸碱度的影响,从而保持溶液的pH值相对稳定。这种溶液称为缓冲溶液。
:)
我在做一细菌不同酸碱度生长状况时,发现这些奇怪现象:pH=3的培养基灭菌(TSB液体培养基)灭菌后pH上升到到9.2!而原来pH=9.0的降到8.7(基本没多少变化),请问各位大侠,这是什么原因?
一般做不同酸碱度生长实验时,该如何才能防止pH在湿热灭菌后基本不变化?
是否可以理解为纯化水得PH范围为6.3-7.6?能否直接用pH计测量?谢谢!















