![SMOBIO/[PM2510] ExcelBand™ Enhanced 3-color Regular Range Protein Marker (9-180 kDa), 250 μl x 2/9-180 kDa), 250 μl x 2</span>
</li>
</ol>
</div>
<div class=col-sm-3 mb8>
<form method=g](images/SMOBIO/image.jpg)
Description
The PM2510 ExcelBand™ Enhanced 3-color Regular Range Protein Marker is a ready-to-use three-color protein standard with 10 pre-stained proteins covering a wide range of molecular weights from 10 to 180 kDa in Tris-Glycine Buffer (9 to 170 kDa in Bis-Tris (MOPS) buffer and 10 to 180 kDa Bis-Tris (MES) buffer). Proteins are covalently coupled with a blue chromophore except for two reference bands (one green and one red band at 25 kDa and 75 kDa respectively) when separated on SDS-PAGE (Tris-Glycine buffer). PM2510 ExcelBand™ Enhanced 3-color Regular Range Protein Marker is designed for monitoring protein separation during SDS-polyacrylamide gel electrophoresis, verification of Western transfer efficiency on membranes (PVDF, nylon, or nitrocellulose) and for approximating the size of proteins.
Features
Ready-to-use — Premixed with a loading buffer for direct loading, no need to boil.
Two reference bands — 75 kDa (red) and 25 kDa (green)
Contents
Approximately 0.2~0.6 mg/ml of each protein in the buffer (20 mM Tris-phosphate (pH 7.5), 2% SDS, 0.2 mM DTT, 3.6 M urea, and 15% (v/v) glycerol).
Quality Control
Under suggested conditions, PM2510 ExcelBand™ Enhanced 3-color Regular Range Protein Marker resolves 10 major bands in 15% SDS-PAGE (Tris-Glycine buffer) and after Western blotting to nitrocellulose membrane.
Storage
4°C for 3 months-20°C for 24 months
Specification
Cat. No. | PM2510 / PM2511 |
Series Name | ExcelBand™ |
Product Size | 2 x 250 μl / 10 x 250 μl |
MW Range | 10 – 180 kDa |
Band Number | 10 |
Band Color | Red/Green/Blue |
Markered Bands | 25, 75 kDa |
Manual
Manual_PM2510_ExcelBand™ Enhanced 3-color Regular Range Protein Marker
SDS
SDS_PM2510
Migration patterns and approximate MWs (kDa)

Why are there contrasting results in molecular weights after using different brands of protein markers?
A.Different proteins even with similar molecular weights would exhibit apparent disparity from the resulting SDS PAGE due to the difference in the composition of the protein’s amino acids (e.g. gelatin). The reason for the disparity is due to the amino acids composition that affects the binding of the protein and SDS. Therefore, we can say that protein marker is a handy tool to estimate molecular weight, but there is no absolute molecular weight standard.
B.While running SDS-PAGE, protein mobility can be affected by the composition of the buffer used, gel percentage, the voltage used, running time, as well as if there is a pre-run.
C.Another recommendation for high molecular weight proteins is to prolong the running time to clarify the relative location of bands.
Protein marker Retention Period: Mentioned -20°C and over 2 years. Is it available for 30 months or 36 months? Have you tested this period?
Yes, we have tested our PM2700. The results showed that the PM2700 is stable at -20℃ for at least two years. It has also shown strong performance for more than 36 months under our careful storage. However, we must only suggest a 2 year retention period for the following reasons: There may be a variation in the environment in storage, and improper use may lead to accumulated damage to the proteins and therefore reduce its retention period.
How many times of freezing and thawing are available for protein markers? If it uses 5 μL per load, would the total usage quantity be 50 times x 2 (250 μL x 2 tube)?
Yes, 100 uses (5 μL each time) can be expected if freezing and thawing are conducted carefully and properly at the appropriate temperature. Before each use, make sure the protein marker is thoroughly thawed.
Do you have data comparison for protein molecular weight’s precision with other protein markers?
Yes. Usually, pre-stained marker is written on “estimated molecular weight” for caution. It is known that the analysis of protein size by an SDS-PAGE is only for “estimation” because of the intrinsic variation of amino acid composition in all proteins including stained and non-stained ones. For example, a protein which is highly hydrophilic might show a particular higher position in the SDS-PAGE analysis when compared to a hydrophobic one. We did compare the migration patterns of SMOBIO’s Protein Markers with other brands, and we concluded that it was difficult to define “precision” due to the reasons mentioned above. Therefore, in the product description, we suggest our users to calibrate the MW against their interested proteins. Although it is impossible to define "precision" for molecular weight of proteins in SDS-PAGE, we did compare the migration pattern of pre-stained markers with unstained protein marker (Invitrogen MARK12) for calibration. It is concluded that the estimated molecular weight of SMOBIO’s pre-stained marker shows a curve matching well with that of unstained native proteins (MARK12), representing a good estimation of the MW of each pre-stained protein in the SDS-PAGE analysis.
Will SMOBIO’s Protein Markers/Ladder be washed out during Western blotting process?
SMOBIO’s Protein Markers/Ladder will be only slightly washed out during Western blotting process. However, the excess of Tween-20 (more than 0.2%) in washing buffer will affect SMOBIO’s Protein Markers/Ladder on the transfer membrane.
Here are suggestions for Western blotting process:1. Transfer SMOBIO’s Protein Markers/Ladder to membrane with transfer buffer containing 20% methanol to fix SMOBIO’s Protein Markers/Ladder on membrane. 2. Wash membrane with PBS or TBS containing less than 0.1% Tween-20.
Will SMOBIO’s Protein Markers/Ladder be affected by the stripping/deprobing process with the presence of β-Mercaptoethanol (β-ME)?
In normal circumstances, the presence of βME during the stripping/deprobing process will only slightly affect SMOBIO’s Protein Markers/Ladder. However, the presence of Tween-20 on PVDF membrane during the stripping/deprobing process has adverse effects on SMOBIO’s Protein Markers/Ladder.
Here are suggestions for Western stripping/deprobing process:
1. Wash the PVDF membrane in methanol for 5~10 minutes prior to the stripping/deprobing process to mitigate the adverse effect of Tween-20.2. Recommended stripping buffer (for 1 L): 15 g glycine, 1 g SDS, 10 mL Tween 20. Dissolve in 800 mL distilled water. Adjust pH to 2.2 Bring volume up to 1 L with distilled waterUnraveling the novel effects of aroma from small molecules in preventing hen egg white lysozyme amyloid fibril formation
Zahra Seraj, Arefeh Seyedarabi, Ali Akbar Saboury, Mehran Habibi-Rezaei, Shahin Ahmadian, Atiyeh Ghasemi PLoS One. 2018; 13(1): e0189754. Published online 2018 Jan 22. doi: 10.1371/journal.pone.0189754
PMCID: PMC5777642
The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins
Chih-Ying Lin, Lih-Yuan Lin PLoS One. 2018; 13(1): e0191971. Published online 2018 Jan 30. doi: 10.1371/journal.pone.0191971
PMCID: PMC5790263
Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability
Jia-Shiuan Tsai, Cheng-Han Chao, Lih-Yuan Lin PLoS One. 2016; 11(1): e0147011. Published online 2016 Jan 11. doi: 10.1371/journal.pone.0147011
PMCID: PMC4709241

ExcelBand™ Protein Markers
Ready-to-use— premixed with a loading buffer for direct loading, no need to boil
Broad range— 310 kDa to 5 kDa
Pre-stained bands — for monitoring protein separation during electrophoresis and Western blotting transferring efficiency on membrane
Enhanced bands— for quick reference

YesBlot™ Western Marker I
Ready-to-use — no need of mixing or heating before sample loading
Direct visualization — 10 IgG-binding proteins for direct visualization on Western blots
Pre-stained bands — 4 pre-stained proteins for monitoring protein separation during electrophoresis and Western blotting transferring efficiency on membrane
Wide range — 10 clear bands from 15 to 200 kDa for size estimation
Quick reference — two enhanced bands (30 and 80 kDa)

Q-PAGE™ Precast Gels
User-friendly gel cassette:
Numbered and framed wells for sample loading
Labeled warning sign and green tape as reminder
Enhanced gel performance:
Enhanced gel electrophoresis speed
Better band separation
Stable for shipping at ambient temperature
Easy compatibility:
Available as homogeneous and adjusted gradient gels for a wide range of protein separation.
Compatible with most popular protein electrophoresis systems
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
各位业内前辈,我们正在考虑引进符合GMP认证标准的CHO细胞系,用于表达可做疫苗生产的重组蛋白类。目前已有符合标准信息的是Thermofisher的CHO-S悬浮培养细胞资料,希望能再多了解一些和这株细胞类似的其他公司符合GMP标准的生产株细胞做个比较。谢谢指教!
国内或者国外进口皆可!?看来你不缺钱啊!
这个问题问的过于笼统!
首先,蛋白表达与纯化包括很多种类型,比如原核蛋白表达,哺乳动物蛋白表达,酵母蛋白表达以及昆虫蛋白表达等等,而现在生物实验中常说的蛋白表达纯化通常是指利用大肠杆菌表达系统的原核蛋白表达,这种表达方式比较简单,普遍都可以做。但是如果是指很多种蛋白表达系统的话,可以做的单位就比较少了。
另外,蛋白的表达成功与否还需要取决于蛋白的性质,所以前期一定要问清楚!
事实上,现在多数药用级别白蛋白都是用血清生产的.
白蛋白的销售方向若是面向实验室,可采用重组质粒转到微生物发酵的方法生产,对土地面积的要求小,更集约,成本效率更高.
我想在体外培养的细胞中,加入PD-L1重组蛋白,激活PD-L1:PD-1通路,但我没能查到相关的文献,不清楚PD-L1重组蛋白的用量。请问各位有相关的经验吗?或者阅读过相关的文献?
而没答案
帮帮我
给我提供答案
考研细胞的题答案
基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 基因敲除是80年代后半期应用DNA同源重组原理发展起来的一门新技术。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型。此后的几年中,基因敲除技术得到了进一步的发展和完善。
基因敲除的技术路线如下:
(1)构建重组基因载体﹔
(2)用电穿孔、显微注射等方法把重组DNA转入受体细胞核内﹔
(3)用选择培养基筛选已击中的细胞﹔
(4)将击中细胞转入胚胎使其生长成为转基因动物,对转基因动物进行形态观察及分子生物学检测。
基因敲除的靶细胞目前最常用的是小鼠ES细胞。基因敲除的技术路线虽不复杂,但由于高等真核细胞内外源DNA与靶细胞DNA序列自然发生同源重组的机率非常低,约为百万分之一,要把基因敲除成功的细胞筛选出来是一件非常困难的工作。因此,同源重组的筛选和检测就成了基因敲除技术所要解决的关键问题。目前已有多种筛

