请使用支持JavaScript的浏览器! Boston Biochem/Recombinant Human His6-USP30 Protein, CF/E-582-050_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall 蚂蚁淘商城
商品信息
联系客服
Boston Biochem/Recombinant Human His6-USP30 Protein, CF/E-582-050
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Boston Biochem/Recombinant Human His6-USP30 Protein, CF/E-582-050
品牌 / 
Boston Biochem
货号 / 
E-582-050
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
Product Details
FAQs
Reviews
SummaryProduct DatasheetsCarrier FreeReconstitution CalculatorBackgroundRelated Research Areas

Recombinant Human His6-USP30 Protein, CF Summary

Purity
>98%, by SDS-PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain.
Activity

Reaction conditions will need to be optimized for each specific application. We recommend an initial USP30 concentration of 20-100 nM in reactions utilizing Ubiquitin-AMC or Ubiquitin-Rhodamine substrates (U-550 or U-555),or 200-500 nM when digesting recombinant Polyubiquitin chain substrates.

Source
Spodoptera frugiperda, Sf 21 (baculovirus)-derived human USP30 proteinContains a C-terminal 6-His tag, Thr57 - Glu517
Accession #
Q70CQ3
Predicted Molecular Mass
54 kDa

Product Datasheets

Product Datasheet
COA

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins.Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration.The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard.In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

E-582

FormulationX mg/ml (X μM) in 50 mM HEPES pH 7.2, 0.4 M NaCl, 10% Glycerol (v/v), 2 mM DTT
ShippingThe product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage:Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -70 °C as supplied.
  • 3 months, -70 °C under sterile conditions after opening.
Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Background: USP30

Ubiquitin carboxyl-terminal hydrolase 30 (USP30) is a member of the C19 family of peptidases and is tethered to the outer mitochondrial surface via a trans-membrane domain. USP30 activity is antagonistic to the pro-mitophagy signal generated by the activities of E3 Ubiquitin Ligase Parkin (PARK2) and kinase PINK1, whichare stimulated by mitochondrial damage. In vivo, USP30 cleaves Ubiquitin from mitochondrial surface proteins such as MIRO1, TOMM20, MFN1, and MFN2. The enzyme displays a strong preference for K6- and K11-linked Polyubiquitin chains in vitro, but has substantially lower activity on Polyubiquitin chains that have been phosphorylated with PINK1. This recombinant protein contains amino acids 57-517 of the full-length protein, and a C-terminal 6-His tag.

References
  1. Bingol B. et al. (2014) Nature 510: 370
  2. Cunningham C.N. et al. (2015) Nat Cell Biol. 17: 160
  3. Thobois S. (2015) Mov. Disord. 30: 340
  4. Wang, Y. et al. (2015) Autophagy 11: 595
  5. Wauer T., et al. (2015) EMBO J. 34: 307
  6. Yue, W. et al. (2014) Cell Res. 24: 482
Long Name
Ubiquitin Specific Protease 30
Entrez Gene IDs
84749 (Human); 100756 (Mouse); 304579 (Rat)
Alternate Names
Deubiquitinating Enzyme 30; EC 3.1.2.15; EC 3.4.19.12; FLJ40511; MGC10702; ubiquitin carboxyl-terminal hydrolase 30; ubiquitin specific peptidase 30; ubiquitin specific protease 30; Ubiquitin Thioesterase 30; Ubiquitin thiolesterase 30; ubiquitin-specific protease 30; Ubiquitin-specific-processing protease 30; Ub-specific protease 30; USP30

FAQs

No product specific FAQs exist for this product, however you may

View all Proteins and Enzyme FAQs

Reviews for Recombinant Human His6-USP30 Protein, CF

There are currently no reviews for this product. Be the first toreview Recombinant Human His6-USP30 Protein, CF and earn rewards!

Have you used Recombinant Human His6-USP30 Protein, CF?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review
蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
CRISPR/Cas9 技术是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点 InDel 突变、敲入、多位点同时突变和小片段的删失等。与传统的 TALEN 和 ZFN 技术相比,CRISPR/Cas9 系统更便捷、高效,应用也更广泛,目前该技术成功应用于人类细胞、斑马鱼、小鼠以及细菌的基因组精确修饰。为让广大从事医学、生命科学事业的人员更多的了解 CRISPR/Cas9 技术方法,更 查看更多>
南京恩晶生物科技有限公司在发布的FRA6B-set siRNA/shRNA/RNAi Lentivector供应信息,浏览与FRA6B-set siRNA/shRNA/RNAi Lentivector相关的产品或在搜索更多与FRA6B-set siRNA/shRNA/RNAi Lentivector相关的内容。 查看更多>
动物模型是现代生命科学研究的重要工具,特别是基因工程小鼠和大鼠,在基因功能研究、人类生理病理机制研究及新药研发中起着不可替代的作用。近几年来,制备动物模型的基因敲除技术主要包括传统ES基因打靶、TALEN、CRISPR/Cas9, 近期又有一项新的基因敲除技术——TetraOne... 查看更多>
博雅辑因(北京)生物科技有限公司在发布的CRISPR/Cas9 Validated PLA2G12A sgRNA; 基因敲除sgRNA供应信息,浏览与CRISPR/Cas9 Validated PLA2G12A sgRNA; 基因敲除sgRNA相关的产品或在搜索更多与CRISPR/Cas9 Validated PLA2G12A sgRNA; 基因敲除sgRNA相关的内容。 查看更多>
南京恩晶生物科技有限公司在发布的KRT18P24-set siRNA/shRNA/RNAi Lentivector供应信息,浏览与KRT18P24-set siRNA/shRNA/RNAi Lentivector相关的产品或在搜索更多与KRT18P24-set siRNA/shRNA/RNAi Lentivector相关的内容。 查看更多>
上海君伯生物科技有限公司在发布的ES细胞策略构建条件性基因敲除小鼠供应信息,浏览与ES细胞策略构建条件性基因敲除小鼠相关的产品或在搜索更多与ES细胞策略构建条件性基因敲除小鼠相关的内容。 查看更多>
CRISPR是最新一代的基因组编辑技术,与之前的ZFN,TALENs技术相比,该技术不再采用蛋白作为识别基因组靶点位点引导者,改换为一条简短的RNA引导Cas系列核酸酶特异性识别基因组序列上的特定位点。从生物合成的角度上来说,合成一小段RNA比合成一段特异性肽链要简单的多,从费用上来说,合成RNA的费用比合成肽链的费用要便宜很多。这也是CRISPR基因组编辑技术从一出现就受到生物学家们热烈追捧的原因。简单讲一下CRISPR的运作机制... 查看更多>
威斯腾生物在发布的慢病毒与 RNAi(RNA干扰)(慢病毒包装纯化、过表达慢病毒、干扰慢病毒、miRNA病毒包装、腺病毒包装纯化、过表达腺病毒、干扰腺病毒、腺相关病毒包装、逆转录病毒包装 ) 威斯腾生物,让科研更简单!供应信息,浏览与慢病毒与 RNAi(RNA干扰)(慢病毒包装纯化、过表达慢病毒、干扰慢病毒、miRNA病毒包装、腺病毒包装纯化、过表达腺病毒、干扰腺病毒、腺相关病毒包装、逆转录病毒包装 ) 威斯腾生物,让科研更简单!相关的产品或在搜索更多与慢病毒与 RNAi(RNA干扰)(慢病毒包装 查看更多>
北京维通达生物技术有限公司在发布的基因敲除小鼠供应信息,浏览与基因敲除小鼠相关的产品或在搜索更多与基因敲除小鼠相关的内容。 查看更多>
美国Covalab品牌产品目录/代理商价格/现货 查看更多>
美国研究小组使用CRISPR-Cas9基因编辑技术,成功修复了镰状细胞病患者造血干细胞中的致病突变基因,为治疗β-地中海贫血症、重症联合免疫缺陷甚至艾滋病等多种疾病指明了新方向。 查看更多>
2017 年 4 月,维通达自主研发的基因修饰明星小鼠模型 NPG 小鼠,荣登国际著名学术期刊《Cell》,人源化 NPG 荣登《Molecular Therapy》。为此,维通达特推出【大小鼠基因敲除服务 买一赠一活动】。我们用更便捷、更专业、更优质的动物模型,助您成就科研梦想。活动时间:2017 年 6 月 1 日~2017 年 8 月 31 日活动内容:基因敲除小鼠 49800(买一赠一) 立即购买 >> 1.最快... 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
基因敲除小鼠,D小鼠,敲除了FADD基因,转入了neo基因,这两个基因在NCBI有好多个,哪个大神能告诉我是哪个
1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实1~100 nmol/L的双链RNA浓度对基因沉默的效果是一致的。这说明双链RNA介导的基因沉默效率是相当高的。需要ATP:Zamore等认为RNAi过程中至少有2个步骤需要能量的供给:一是长的双链RNA被 Dicer所酶切产生双链RNA;二是在双链RNA与RISC结合解链后形成有活性的RISC。
⒉特异性:Elbashir等和Brummel kamp等发现在21~23个碱基对中有1~2个碱基错配会大大降低对靶mRNA的降解效果。
⒊位置效应:Holen等根据人TF(tissue factor)不同的位置各合成了4组双链RNA来检测不同位置的双链RNA对基因沉默效率的影响。在不同浓度和不同类型的细胞中,hTF167i和hTF372i能够抑制85%~90%的基因活性,hTF562i只能抑制部分基因活性,而hTF478i则几乎没有抑制基因的活性。他们还以hTF167为中心依次相差3个碱基对在其左右各合成了几组双链RNA,有趣的是它们所能抑制该基因活性的能力以hTF167为中心依次递减。特别是hTF158i和 hTF161i只与hTF167i相距9个和6个碱基,但它们几乎没有抑制该基因活性的能力。结果还表明双链RNA对mRNA的结合部位有碱基偏好性,相对而言,GC含量较低的mRNA被沉默效果较好。
⒋竞争效应:Hoten等将10 nmol/L和30 nmol/L的hTF167i相比,两者的沉默基因效果无差异,但将20 nmol/L基因抑制效果很差的PSK314i和10 nmol/L的hTF167i相混和后,hTF167i产生的抑制效果明显降低。
⒌可传播性:在线虫中,双链RNA可以从起始位置传播到远的地方,甚至于全身。Feinberg 和Hunter在线虫细胞膜上发现一种跨膜蛋白SID1,它可以将双链RNA转运出细胞,因此系统性的RNAi包括了SID1介导的双链 RNA在细胞间的运输。但在果蝇上并未发现有此基因的同源物,因此在果蝇上通过注射产生的RNAi不能扩散。向左转|向右转

各位前辈好,小弟刚用罗氏的X-tremeGENEHPDNATransfectionReagent转染试剂转染了siRNA,发现出现了很多会动的小亮点,貌似是布朗运动,请问这是什么?

另外我看网上都说6小时换培养基,请问这个罗氏的也是一样的吗?如果需要换,可以加双抗吗?

谢谢各位帮助我的人了!!!

“基因敲除狗”,“基因敲除猪”,CRISPR/Cas9到底是怎样一个技术技术近日,中国科学家利用基因编辑技术——CRISPR/Cas9,对抑制狗骨骼肌生长的基因(MSTN)进行了敲除,培育出两只肌肉发达的“大力神”狗,成功构建了世界首个基因敲除狗模型。科研人员所使用的“基因编辑技术”,顾名思义,能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。一、与诺奖“擦肩而过”的CRISPR/Cas9技术这不是CRISPR/Cas9这项明星技术第一次得到人们的关注。在此之前,有着“豪华版”诺奖之称的“2015年度生命科学突破奖”颁发给了发现基因组编辑工具“CRISPR/Cas9”的两位美女科学家——珍妮弗?杜德娜和艾曼纽?夏邦杰。二人更是获得了2015年度化学领域的引文桂冠奖——素有诺奖“风向标”之称,曾被认为是今年诺贝尔化学奖的最有力竞争者。那CRISPR/Cas9到底是一项什么技术,为何能够获得如此这般青睐,又何以在短短两三年时间内,发展成为生物学领域最炙手可热的研究工具之一,并有近700篇相关论文发表?它将来又会如何影响到我们的生活?CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。二、CRISPR/Cas系统的灵感来源CRISPR/Cas9技术的灵感来源于细菌的一种获得性免疫系统。与哺乳动物的二次免疫应答类似,细菌在抵抗病毒或外源质粒入侵时,会产生相应的“记忆”,来抵抗该种外源遗传物质的再次入侵,而这种获得性免疫正是由细菌的CRISPR/Cas系统实现的。在细菌的基因组上,存在着串联间隔排列的“重复序列”,这些重复序列相对保守,我们称之为CRISPR序列(Clustered Regularly Interspersed Short Palindromic Repeats—成簇的规律间隔的短回文重复序列)。1、“记录”入侵者档案其中的“间隔序列”来源于病毒或外源质粒的一小段DNA,是细菌对这些外来入侵者的“记录”。(如图A所示)。图1 CRISPR序列示意图其中,菱形框表示高度可变的间隔序列,正方形表示相对保守的重复序列病毒或外源质粒上,存在“原间隔序列”,“间隔序列”正是与它们互相对应。“原间隔序列”的选取并不是随机的,这些原间隔序列的两端向外延伸的几个碱基往往都很保守,我们称为PAM(Protospacer adjacent motifs-原间隔序列临近基序)。当病毒或外源质粒DNA首次入侵到细菌体内时,细菌会对外源DNA潜在的PAM序列进行扫描识别,将临近PAM的序列作为候选的“原间隔序列”,将其整合到细菌基因组上CRISPR序列中的两个“重复序列”之间。这就是“间隔序列”产生的过程。2、打击二次入侵者当外源质粒或病毒再次入侵宿主菌时,会诱导CRISPR序列的表达。同时,在CRISPR序列附近还有一组保守的蛋白编码基因,称为Cas基因。CRISPR序列的转录产物CRISPR RNA和Cas基因的表达产物等一起合作,通过对PAM序列的识别,以及“间隔序列”与外源DNA的碱基互补配对,来找到外源DNA上的靶序列,并对其切割,降解外源DNA。这也就实现了对病毒或外源质粒再次入侵的免疫应答。正是基于细菌的这种后天免疫防御机制,CRISPR/Cas9技术应运而生,从而使科学家们利用RNA引导Cas9核酸酶实现对多种细胞基因组的特定位点进行修饰。三、CRISPR/Cas9技术的实现需要什么?在CRISPR/Cas9技术中,我们把即将被编辑的细胞基因组DNA看作病毒或外源DNA。基因编辑的实现只需要两个工具——向导RNA(guide RNA, gRNA)和Cas9蛋白。其中,向导RNA的设计并不是随机的,待编辑的区域附近需要存在相对保守的PAM序列(即三碱基序列NGG,其中N可以是任意碱基),而且向导RNA要与PAM上游的序列碱基互补配对。以基因敲除为例,如图3所示,在待敲除基因的上下游各设计一条向导RNA(向导RNA1,向导RNA2),将其与含有Cas9蛋白编码基因的质粒一同转入细胞中,向导RNA通过碱基互补配对可以靶向PAM附近的目标序列,Cas9蛋白会使该基因上下游的DNA双链断裂。对于DNA双链的断裂这一生物事件,生物体自身存在着DNA损伤修复的应答机制,会将断裂上下游展开
浇筑前应将模板内的垃圾、泥土,钢筋上的油污等杂物清除干净,并检查钢筋的水泥砂浆垫块、塑料垫块是否垫好。如使用木模板时应浇水使模板湿润。柱子模板的扫除口应在清除杂物及积水后再封闭。
ZFN

ZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription factor family),在真核生物中从酵母到人类广泛存在,形成alpha-beta-beta二级结构。其中alpha螺旋的16氨基酸残基决定锌指的DNA结合特异性,骨架结构保守。对决定DNA结合特异性的氨基酸引入序列的改变可以获得新的DNA结合特异性。多个锌指蛋白可以串联起来形成一个锌指蛋白组识别一段特异的碱基序列,具有很强的特异性和可塑性,很适合用于设计ZFNs。与锌指蛋白组相连的非特异性核酸内切酶来自FokI的C端的96个氨基酸残基组成的DNA剪切域(Kim et al., 1996)。FokI是来自海床黄杆菌的一种限制性内切酶,只在二聚体状态时才有酶切活性(Kim et al., 1994),每个FokI单体与一个锌指蛋白组相连构成一个ZFN,识别特定的位点,当两个识别位点相距恰当的距离时(6~8 bp),两个单体ZFN相互作用产生酶切功能。从而达到 DNA 定点剪切的目的。

TALEN

TALENs中文名是转录激活因子样效应物核酸酶,TALENs是一种可靶向修饰特异DNA序列的酶,它借助于TAL效应子一种由植物细菌分泌的天然蛋白来识别特异性DNA碱基对。TAL效应子可被设计识别和结合所有的目的DNA序列。对TAL效应子附加一个核酸酶就生成了TALENs。TAL效应核酸酶可与DNA结合并在特异位点对DNA链进行切割,从而导入新的遗传物质。相对锌指核酸酶(zinc-finger nuclease, ZFN)而言,TALEN能够靶向更长的基因序列,而且也更容易构建。但是直到现在,人们一直都没有一种低成本的而且公开能够获得的方法来快速地产生大量的TALENs。

CRISPR

CRISPR是生命进化历史上,细菌和病毒进行斗争产生的免疫武器,简单说就是病毒能把自己的基因整合到细菌,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出CRISPR系统,利用这个系统,细菌可以不动声色地把病毒基因从自己的染色体上切除,这是细菌特有的免疫系统。微生物学家10年前就掌握了细菌拥有多种切除外来病毒基因的免疫功能,其中比较典型的模式是依靠一个复合物,该复合物能在一段RNA指导下,定向寻找目标DNA序列,然后将该序列进行切除。许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。以往研究表明,通过这些介入,CRISPR能使基因组更有效地产生变化或突变,效率比TALEN(转录激活因子类感受器核酸酶)等其他基因编辑技术更高。但最近研究发现,虽然CRISPR有许多优点,在人类癌细胞系列中,它也可能产生大量“误伤目标”,尤其是对不希望改变的基因做修改。

三种系统的比较

那么,可能会有人疑问了,既然如此,这三种系统的区别和联系又是什么呢?特意从有效性,特异性,载体性及其它四个方面,进行了一个小小的总结。

有效性

在不同的基因位点基因靶向性的有效性都是不同的,并且这也依赖于每种细胞的转染的效率。因此,只能点对点的比较靶向位点,细胞系和转染方法,这样的比较才有意义。基于我们课题组和其他课题组的ZFN和TALENs的靶向效率的实验,我们在细胞系水平上进行了比较,虽然他们可能与不同的突变特征有关。Chen的课题组的最近的研究进行了大规模的体外分析,发现TALENs在使用与上下游相关的序列的时候比ZFNs显著的具有更多的突变产生。另一个组比较了TALENs和CRISPRs在人类ESCs细胞中的情况,观察到,通过用CRISPR更换掉TALENs,在其他方面条件相同的情况下,通过产生更多的基因突变的克隆,本质上提高了效率。最近,功能上重新编码的TALENs(reTALENs)已经得到了发展,并且在人类的iPSCs细胞中的基因编辑的有效性相比较于CRISPR得到了提高。但是这个研究发现,CRISPR比reTALENs能够实现7-8倍的同源重组效率,并且其一定程度的比HE更有效率,挡雨ODN捐赠者进行比较。

特异性

ZFN和TALENs都是作为二聚体发挥作用的,其特异性是由DNA绑定的区域决定的,这个区域在每个剪切位点最多可以识别36bp。然而,在在II型CRISPR系统中的Cas9是由一种RNA引导的核酸,它的特异性是由PAM和PAM上游的20个引导核苷酸决定的。这表明,3’12个碱基的“种子序列”是最关键的,而剩下的8个碱基(非种子序列)甚至PAM序列都是可以错配的。ZFN的特异性由一种不带偏见的全基因组分析进行,并且发现存在频率低,但是可以检测到的脱靶事件的发生,其可以定义为一个高度有限的一部分。已经有研究表明,TALENs有比ZFN更低的细胞毒性和脱靶效率。
基于这个研究,TALENs诱导的CCR5特异性突变在CCR5的对偶基因上发生率是17%,而在高度同源的CCR2位点上只有1%。相反,CCR5特异性的ZFN的活性在这两个位点是相在当的,CCR5位点的突变频率是14%,而CCR2的是12%。几个研究也报告了,CRISPR/Cas系统在细胞毒性评价或者DSB诱导的检测(即,H2AX免疫染色)中都没有明显的脱靶现象。然而,最近的研究发现,CRISPR诱导的靶向不同的人类细胞的基因出现了显著的脱靶现象。例如,靶向CCR5的CRSIPR/Cas9系统偶到的在CCR2上的脱靶切除的突变率为5-20%,这是非常接近之前讨论的CCR5靶向的ZFN诱导的突变率。三个其他的小组利用更系统的方法在人类细胞中评估了CRISPR的脱靶活性,其结果表明CRISPR可能能够发生目标不匹配,从而在预测的脱靶位点上引入微缺失或者插入(插入缺失)。此外,靶向位点的定位和内涵能够显著的影响gRNA识别他们的靶向目标,而在基因组序列中的“脱靶序列”也是一样的。已经有报告说,脱靶效应能够通过小心的控制Cas9的mRNA的浓度来克服。此外,在基因编辑的时候使用配对的Cas9的切口酶已经表明能够显著的减少至少1500倍的脱靶活性。

病毒为基础的传递

ZFN基因可以通过慢病毒和腺病毒进行传递。当前,ZFNs导入体细胞是通过共转染两个慢病毒载体,每个载体编码一个功能性异源二聚体对的一个单体。相反,腺病毒,但不是基于HIV的慢病毒,载体使用与TALEN的基因的传递,因为TALENs的大尺寸和TALE重复序列的种应用。Cas9也是一个较大的基因,并且其酶促死的版本也可以通过慢病毒进行传递,虽然也盛行的Cas9的稳定的表达对于细胞的毒性依然是不清楚的。

其他方面

ZFNs和TALENs都能够在切割时产生粘性末端,因此可以使用标签绑定,如果具有互补突出部分的双链寡聚核苷酸(dsODN)是可以进行预测的。ZFNs和TALENs都可以在捐赠的质粒的基因组中引入同一个核酸靶向位点来实现。ZFNs和TALENs通过采取同源二聚体的方式从而获得优势,绑定门通过设计实现了重组(Ob-LiGaRe)。这种方法在使用的质粒中倒置了两半的核酸酶的结合位点,这是在没有改变接头区的方向实现的,因此通过相同的ZFN/TALEN碱基对能够阻止连接产物的消化。因为CRISPR产生了一个非粘性末端,直接连接会遇到挑战。最近的文章表明,具有Cas9n的gRNAs的碱基对能够诱导具有徒步部分的DSBs,并且促进dsODN的高效率的NHEJ介导的插入。虽然至今还没有出版,但是进入的转基因大小的DNA能够通过引入在目标质粒的CRISPR/Cas9靶向位点的具有CRISPR/Cas的基因组使用。CRISPR/Cas系统相比较于ZFNs和TALENs具有几个优势,例如易于构建,花费低,并且产物具有可扩展性,并且能够用于多个靶向基因组位点。
细胞器的观察实验——电镜切片资讯123
冰雨的冰雪世纪2021-07-31

问下各位大神,用在线设计的软件找PAM后,还需要找functiondomains,从而排除一些PAM吗?有没有一些比较好的在线设计网站。

请问您具体需要购买什么产品呢?麻烦详细描述一下,方便小v准确为您解答。
RNAi(RNA干扰)技术:生物的遗传信息从脱氧核糖核酸(DNA)传到作为“信使”的核糖核酸(RNA),再传到蛋白质,特定的基因控制细胞制造特定的蛋白质。如果RNA被干扰,基因就会“沉默”,不起作用。科学家在这次实验中的做法是:设计一段微小的RNA分子,与需要干扰的基因的某个片段吻合。这些称为“小干扰RNA”的分子会打开细胞抵抗入侵病毒的一个天然防御系统,制造化学物质攻击这个基因释放出的信使RNA,使之无法正常传递遗传信息。
这种技术,以前曾被用来研究植物和蠕虫等,但直到现在才发现它对哺乳动物细胞也有效。
如果把这个思路用于医疗,使致病的基因“沉默”下来,不就可以治好许多疾病吗?而哈佛医学院的研究人员首次用RNA干扰使活体动物的致病基因“沉默”。美国哈佛医学院的科学家在最新一期英国《自然医学》杂志上报告说,他们已经成功地利用这种核糖核酸干扰技术治愈了实验鼠的肝炎。如果进一步证实这种技术在人体内有效,将为许多疾病和感染提供新疗法。
在研究中,科学家干扰的目标是“凋亡相关蛋白质(FAs)基因”。这种蛋白质存在于细胞表面,它能够启动细胞的自杀程序,据认为,许多肝病是由于病毒、免疫系统失常或慢性酒精中毒激活了FAs基因所导致的。
研究人员给实验鼠尾部的血管注入旨在“沉默”FAs基因的小干扰RNA,发现有90%的肝细胞接收到了这种RNA分子,FAs蛋白质的产量变成原先的十分之一。随后,科学家给实验鼠注入大量FAs抗体,激活细胞自杀程序,模拟实验鼠患有严重肝炎的情形。
结果,未接受RNA干扰治疗的实验鼠有40%在3天内死亡。而40只接受过治疗的实验鼠有33只活了下来,10天后研究人员检查这些实验鼠的肝部,发现完全正常。
对于人来说,身体比老鼠大得多,血液循环系统也庞大。科学家目前正在寻找把小干扰RNA送到人体特定部位的方法,以便验证RNA干扰技术在人体中的效果。
在此,我只是抛砖引玉,向大家简单介绍一种新的技术,希望对其感兴趣的同仁多多发表,也希望版主给予支持。
欲研究某基因的功能,只知道现在很多干扰实验是在细胞水平体外进行实验的.不清楚目前能否应用RNA干扰在小鼠或其它动物上进行,这种设计是否可行.
  请有经验的战友指点,若可以最好能提供几篇应用动物进行RNA干扰研究的文章.
  非常感谢!

如题,PolyplusTransfection转染试剂在中国区的代理商有哪些?求推荐1-2个靠谱的,谢谢!

2月16日,美国专利及商标局传来重磅消息——该部门宣布,隶属于哈佛大学与麻省理工学院的Broad研究所继续保有2014年获批的CRISPR-Cas9应用专利,也让这项**性基因编辑工具的专利之争大体尘埃落定。

▲三行文字,决定了这项专利的归属(图片来源:STAT)

毫无疑问,CRISPR-Cas9基因编辑系统是本世纪最为重要的生物发现之一。2015年,《科学》将它评为年度突破;助力这项技术诞生的科学家们也先后获得了有“科学界奥斯卡”之称的“突破奖”(BreakthroughPrize),在分子生物学界影响深远的“格鲁伯遗传学奖”(GruberGeneticsPrize),以及表彰重大生物医学突破的“沃伦·阿尔珀特奖”(WarrenAlpertPrize)。

CRISPR-Cas9基因编辑系统能取得今天的成功,绝非一名科学家的功劳。2012年,JenniferDoudna教授与EmmanuelleCharpentier教授在《科学》杂志上发表文章,确认CRISPR-Cas9系统在体外实验中能“定点”对DNA进行切割。两个月后,VirginijusSiksnys教授在《PNAS》杂志上发表了类似的研究。这些论文表明CRISPR-Cas9系统作为基因编辑工具的巨大潜力。

2013年,张锋教授的研究团队在《科学》杂志上发表了一篇重磅研究:他们首次在哺乳动物内应用了CRISPR-Cas9系统,并确认它能在几周内建立起小鼠的疾病模型。此外,张锋教授的团队也首次在人体细胞内成功地用CRISPR-Cas9系统完成了基因编辑。

▲张锋教授团队率先在哺乳动物细胞中应用了CRISPR-Cas9技术(图片来源:STAT)

科学突破需要群策群力,专利申请却并非如此。2012年,加州大学伯克利分校与Broad研究所/麻省理工学院先后向美国专利及商标局递交了CRISPR应用的专利申请。2014年4月,美国专利及商标局为后者率先颁发了专利,而前者的申请至今未得到批准。加州大学伯克利分校认为,Doudna教授与Charpentier教授等人的研究在CRISPR的应用中起到了奠基性的作用,因此Broad研究所获得的专利值得商榷。2016年1月,美国专利及商标局展开了进一步的调查,并于今日做出判决——三名法官认为“nointerferenceinfact”。

业内媒体STAT在一则报道中指出,这短短的四个单词,意味着Broad研究所在2014年获得的关键性CRISPR专利,与加州大学递交的专利申请有足够多的不同。

▲CRISPR相关专利申请一览

“我们递交的专利并非首个与CRISPR应用相关的专利,但它们是首批描述这一发明用于哺乳动物基因组编辑的专利。”Broad研究所在今天发布的一份声明中提到。

值得一提的是,今日的专利判决并不会影响CRISPR-Cas9系统在科学界的应用。作为一家非营利性科研机构,Broad研究所乐于将突破性的发现分享给全球科学界,造福人类健康。因此,Broad研究所也将继续与Addgene(非营利性质粒库)合作,分享这一重要研究工具。自2013年以来,全球59个国家的2000多家研究所已经从Addgene处获得了37000多个与CRISPR-Cas9相关的质粒与试剂。此外,Broad研究所也在今日发表的声明中宣布,将继续为业界的合作伙伴们提供相关研发工具。

张锋博士是麻省理工学院历史上最年轻的华人终身教授。去年,张锋教授作为“下一代领袖”(NextGenerationLeaders)之一,登上了《时代周刊》亚洲版的封面。在报道中,《时代周刊》认为他的工作给CRISPR-Cas9系统带来了巨大变革,让科学家们能够完成先前不敢设想的工作。如今,我们有望能清除每一个受感染细胞中的艾滋病病毒,或是治疗镰刀状红细胞贫血症等经典的遗传疾病。甚至,科学家们已经畅想利用它来攻克癌症的可能。此外,它也能在植物的基因组中得到应用。这能带来全新的生物能源,或带来性状更稳定的作物。

我们期待看到CRISPR-Cas9带来更多有望造福人类的应用!

参考资料:

[1]FORJOURNALISTS:STATEMENTANDBACKGROUNDONTHECRISPRPATENTINTERFERENCEPROCESS

[2]BroadInstituteprevailsinheateddisputeoverCRISPRpatents

[3]张锋教授登上《时代周刊》封面:编辑基因组的下一代领袖


品牌分类