Highlights
- Quick (5 minute) clean-up of large-sized DNA from any enzymatic reaction or impure preparation without messy precipitations
 - Unique spin column for low volume elution of ultra-pure, high-yield DNA
 - Eluted DNA is ideal for PCR, endonuclease digestion, sequencing, etc.
 
Description
| Applicable For | Eluted DNA is ideal for ligation, sequencing, labeling, PCR, microarray, transfection, transformation, restriction digestion procedures, and any other sensitive downstream application | 
|---|---|
| Elution Volume | ≥ 35 µl of DNA Elution Buffer | 
| Equipment | Microcentrifuge | 
| Purity | A260/A280 > 1.8, A260/A230 > 1.8 | 
| Sample Source | Enzymatic reactions or impure preparations containing genomic DNAs | 
| Sample storage | Eluted DNA can be used immediately or stored at ≤ -20°C | 
| Size Range | 50 bp to 200 kb | 
| Yield | Recovery of DNA ranges from 70 - 95% | 
Q1: What is the lower limit and minimal amount of DNA that can be recovered?
Picogram levels of DNA can be recovered. The limitation is based on sensitivity of detection method.
Q2: How to process naked DNA stored in DNA/RNA Shield?
Use the standard protocol (add 2 or 5 volumes of DNA binding buffer depending on DNA size).
Q3: What to do if ethanol addition to the DNA Wash Buffer was omitted?
The DNA will be eluted off the column. Rebind samples using the appropriate amount of DNA Binding Buffer and wash the column with the properly prepared wash buffer.
Q4: What happens if more DNA was loaded on the columns than the stated maximum binding capacity?
Oversaturation of the column can result in total DNA loss due to clogging of silica matrix.
Q5: How many times can columns be reloaded?
We recommend no more than 5 times as binding efficiency might decrease.
Q6: What is the minimum input volume of DNA sample?
Working with volumes below 50 µl can result in decreased recovery. We recommend raising the starting volume to 100 µl with water to ensure optimal binding conditions.
| Cat # | Name | Size | Price | |
|---|---|---|---|---|
| C1102-25 | Zymo-Spin IIC-XL Columns | 25 Pack | $34.00 | |
| D5201-1-50 | ChIP DNA Binding Buffer | 50 ml | $37.00 | |
| C1001-1000 | Collection Tubes | 1000 Pack | $90.00 | |
| C1001-500 | Collection Tubes | 500 Pack | $52.00 | |
| C1001-50 | Collection Tubes | 50 Pack | $15.00 | |
| D4003-2-6 | DNA Wash Buffer (Concentrate) | 6 ml | $10.00 | |
| D4003-2-24 | DNA Wash Buffer (Concentrate) | 24 ml | $33.00 | |
| D3004-4-10 | DNA Elution Buffer | 10 ml | $14.00 | |
| D3004-4-1 | DNA Elution Buffer | 1 ml | $11.00 | |
| D3004-4-4 | DNA Elution Buffer | 4 ml | $10.00 | 
ebiomall.com
    
                
        
        
        
        >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    >
                                                    做黄单胞,在通过Tn5构建转化子库之后,通过致病力筛选、Tail-PCR获得侧翼序列、比对获得全基因之后,将几个可能与致病力相关的基因做了敲除,现在正在构建互补载体,已经做了敲除转化子的胞外酶活性测定、胞外多糖分泌测定、生长曲线、致病性测定等等,不过不知道将互补做完了之后还有什么可以做的。
目前,来自Streptococcus pyogenes 的CRISPR-Cas9系统应用最为广泛。Cas9 蛋白(含有两个核酸酶结构域,可以分别切割DNA 两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。
由于PAM序列结构简单(5’-NGG-3’),几乎可以在所有的基因中找 到大量靶点,因此得到广泛的应用。CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前最高效的基因组编辑系统[1]。
通过基因工程手段对crRNA和tracrRNA进行改造,将其连接在一起得到sgRNA(single guide RNA)。融合的RNA具有与野生型RNA类似的活力,但因为结构得到了简化更方便研究者使用。通过将表达sgRNA的原件与表达Cas9的原件相连接,得到可以同时表达两者的质粒,将其转染细胞,便能够对目的基因进行操作[2,3]。
目前常用的CAS9研究方法是通过普通质粒,质粒构建流程如下:
Cas9质粒构建
目前常见的CAS9普通质粒有(汉恒生物提供cas9质粒试剂盒):
虽然普通质粒很多时候也能达到实验效果,但是质粒转染具有效率低,作用时间短暂性等缺点。病毒的出现解决了质粒这些问题,常用的病毒主要有慢病毒和腺病毒,慢病毒常用质粒见addgene(lentiCRISPR v2,lentiGuide-Puro,lentiCas9-Blast),慢病毒可以整合入宿主基因组中,长期稳定的表达(汉恒生物提供CRISPR/cas9 慢病毒包装),但是由于慢病毒克隆能力有限而CAS9本身分子量比较大(大于4kb),且长期插入可能导致乱切,脱靶等,同时慢病毒包装最终获得的滴度不高等原因,腺病毒更有优势,腺病毒克隆能力强,获得的病毒滴度也高。同时相对于普通质粒来说,作用是时间也比较长,可以达到更理想的敲除效果。
缺点:质粒仍然较大,转染难度相对较大。具有碱基识别偏好性,局限了基因编辑的运用范围,而且会导致不同基因位点编辑效率不同。筛选仍然需要较大工作量。
类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统
只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件。
目前,来自Streptococcuspyogenes的CRISPR-Cas9系统应用最为广泛。Cas9蛋白(含
有两个核酸酶结构域,可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合
成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的
DNA双链进行切割,使DNA双链断裂。
由于PAM序列结构简单(5’-NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前最高效的基因组编辑系统。
http://www.addgene.org/crispr/guide/
一、CRISPR/Cas9系统的构成
CRISPR(clustered,regularly interspaced,short palindromic repeats)是一种来自细菌降解入侵的病毒DNA或其他外源DNA的免疫机制。在细菌及古细菌中,CRISPR系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件。目前,来自Streptococcus pyogenes的CRISPR/Cas9系统应用最为广泛。
Cas9蛋白(含有两个核酸酶结构域,可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。
研究人员为了将CRISPR/Cas9技术发展为高效的基因打靶工具,又进行了优化和改造。Cong, L.等人[1]在不影响系统效率的情况下,将crRNA和tracrRNA融合为一条RNA。通过这种简化,CRISPR/Cas9系统现仅包括两个元素:Cas9蛋白和sgRNA(single guide RNA)。因此现在人们将CRISPR/Cas9技术也称为Cas9/sgRNA技术。
二、CRISPR/Cas9技术的基因编辑机制
CRISPR/Cas9通过对预设的DNA位点进行切割,造成DNA双链断裂(DSB, double strand break)。这种DNA的损伤可以启动细胞内的修复机制,主要包括两种途径:
一是低保真性的非同源末端连接途径(NHEJ,Non-homologous end joining),此修复机制非常容易发生错误,导致修复后发生碱基的缺失或插入(Indel),从而造成移码突变,最终达到基因敲除的目的。NHEJ是细胞内主要的DNA断裂损伤修复机制。利用靶向核酸酶可以在受精卵水平高效的实现移码突变,从而制备基因敲除模式动物。CRISPR/Cas9技术的出现,使得无需再使用相应物种的ES细胞系就可以制备基因敲除模式生物,且已成功应用于小鼠[5]、大鼠[6]、猪[7]、灵长类[8]、果蝇[9]等等。
第二种DNA断裂修复途径为同源介导的修复(HR, homology-directedrepair),这种基于同源重组的修复机制保真性高,但是发生概率低。在提供外源修复模板的情况下,靶向核酸酶对DNA的切割可以将同源重组发生的概率提高约1000倍[10]。利用这种机制可以实现基因组的精确编辑,如:条件性基因敲除、基因敲进、基因替换、点突变等等。
CRISPR/Cas9技术以自己操作的便捷性,高效的基因编辑能力获得青睐,成为当下科研工作者的新宠儿。各大实验室纷纷加入开发CARISPR/Cas9技术的行列中,媒体也将之评为21世纪最有影响的十大技术之一。让我们跟随CRISPR/Cas9技术的脚步一起加强科研基础的建设,推动生物科研的进步!
详细信息你可以参考:http://www.bbctg.com.cn/show_2/1733.html

                                    
                    