
Versatility | Isolation of RNA, DNA, and protein from the same sample |
---|---|
Capability | facilitates immediate and effective inhibition of RNase activity, while lysing cells and eliminating other cellular components |
Application | RNA Isolation |
ebiomall.com






>
>
>
>
>
>
>
>
>
>
dsRNA(double-stranded RNA)介导基沉默作用dsRNA基点研究基沉默机制热点dsRNA指于30碱基RNA哺乳物细胞至少2条路径竞争双链RNA(dsRNA)其特异性路径:特殊dsRNA序列用于RNAi起始阶段dsRNA切siRNA(small interfering RNA 或short interfering RNAs)siRNARNA干扰作用赖发重要间效应能提供定信息允许特定mRNA降解siRNA义链与反义链各21碱基其19碱基配再每条链3’端都2配碱基
另条非特异性路径:要dsRNA存降解所RNA抑制所蛋白质合dsRNA激蛋白激酶PKR激PKR通系列磷酸化关闭翻译起始导致翻译抑制通激2’-5’AS 合激RNase L导致非特异RNA降解
关于特异性RNA作用机制模型包括起始阶段效应阶段起始阶段dsRNADicer酶(RNaseIII家族特异识别双链RNA员属内切核酸酶)作用加工裂解21-23核甘酸干扰RNA片断(siRNA)Dicer含解旋酶性及dsRNA结合域PAZ结构
RNAi 效应阶段siRNA双链结构解旋并形性蛋白/RNA复合物(RNA-induced silencing complex or RISC)siRNA 解双链即RISC激程需ATP由RISCsiRNA反义链与mRNA互补区域结合随切割mRNA达RNA水平干扰基表达RISC由种蛋白组包括核酸酶解旋酶同源RNA链搜索性等
⒉特异性:Elbashir等和Brummel kamp等发现在21~23个碱基对中有1~2个碱基错配会大大降低对靶mRNA的降解效果。
⒊位置效应:Holen等根据人TF(tissue factor)不同的位置各合成了4组双链RNA来检测不同位置的双链RNA对基因沉默效率的影响。在不同浓度和不同类型的细胞中,hTF167i和hTF372i能够抑制85%~90%的基因活性,hTF562i只能抑制部分基因活性,而hTF478i则几乎没有抑制基因的活性。他们还以hTF167为中心依次相差3个碱基对在其左右各合成了几组双链RNA,有趣的是它们所能抑制该基因活性的能力以hTF167为中心依次递减。特别是hTF158i和 hTF161i只与hTF167i相距9个和6个碱基,但它们几乎没有抑制该基因活性的能力。结果还表明双链RNA对mRNA的结合部位有碱基偏好性,相对而言,GC含量较低的mRNA被沉默效果较好。
⒋竞争效应:Hoten等将10 nmol/L和30 nmol/L的hTF167i相比,两者的沉默基因效果无差异,但将20 nmol/L基因抑制效果很差的PSK314i和10 nmol/L的hTF167i相混和后,hTF167i产生的抑制效果明显降低。
⒌可传播性:在线虫中,双链RNA可以从起始位置传播到远的地方,甚至于全身。Feinberg 和Hunter在线虫细胞膜上发现一种跨膜蛋白SID1,它可以将双链RNA转运出细胞,因此系统性的RNAi包括了SID1介导的双链 RNA在细胞间的运输。但在果蝇上并未发现有此基因的同源物,因此在果蝇上通过注射产生的RNAi不能扩散。向左转|向右转
近期,北京大学基础医学院鲁凤民教授课题组与许中伟、夏宁邵教授等合作,在《Theranostics》杂志上在线发表了题为“ThegRNA-miRNA-gRNAternarycassettecombiningCRISPR/Cas9withRNAiapproachstronglyinhibitshepatitisBvirusreplication”的研究论文。该研究通过模拟microRNA(miRNA)的生成过程,整合双gRNA导向的CRISPR/Cas9和RNA干扰技术,高效破坏乙型肝炎病毒(HBV)的复制模板-共价闭合环状DNA(ccCDNA),探索病毒清除新路径。北医王杰讲师、陈然和张瑞阳博士研究生为该论文的共同第一作者。
目前,我国仍有慢性HBV感染者约7800万人,慢乙肝患者约2800万人。HBV感染仍是我国病毒性肝炎、肝硬化及肝癌的重要致病因素。作为HBV复制模板的cccDNA,由于其半衰期相对较长,加上cccDNA池的不断补充,使得细胞核内的cccDNA持续存在、感染慢性化。目前,临床上治疗慢乙肝的常用药物为核苷(酸)类似物和长效干扰素,二者均不直接作用于cccDNA,难以有效清除病毒实现临床治愈。因此,研发直接靶向cccDNA的药物,寻找清除cccDNA的新方法和新策略,是当前慢乙肝治疗药物研发的热点。
该研究以miRNA-31为基本骨架,通过模拟其核心序列的二级结构设计HBV特异的miRNA(miR-HBV),miRNA两侧侧翼序列为特异性靶向cccDNA不同位点的引导RNA(gRNA)。如图所示,该gRNA-(miR-HBV)-gRNA三联体表达体系导入细胞后,在细胞核内转录形成gRNA-(miR-HBV)-gRNA长转录本,经内源的Drosha/DGCR8复合体剪切,形成2个gRNA和1个miR-HBV前体(pre-miR-HBV)。进入细胞质后,pre-miR-HBV进一步经Dicer酶剪切,形成成熟的miR-HBV。一方面双gRNA导向的CRISPR/Cas9系统通过切割并去除cccDNA的关键调控和编码序列直接破坏cccDNA,另一方面通过miR-HBV在转录后水平抑制HBV复制,进而抑制cccDNA池的补充,协同促进HBVcccDNA的清除。此外,本研究还发现,当pri-miRNA-31的侧翼序列长度为38bp时与双gRNA组成的三联体对HBV复制的抑制效率最高。
双gRNA导向的CRISPR/Cas9整合RNAi技术高效抑制HBV复制模式图
当然,该技术离临床应用尚有较远的距离。一方面如何高效和靶向性地将三联体递送到HBV感染的肝细胞内是需要攻克的一大障碍;另一方面,CRISPR/Cas9基因编辑技术的脱靶效应也有安全性之虞。然而,近年来随着Cas核酸酶的不断改造,其脱靶效应得到了有效控制,安全性大为提高。而且,随着金黄色葡萄球菌Cas9的发现,使得CRISPR/Cas9系统可以装入腺相关病毒载体中,致使该技术应用于临床的距离逐渐缩短。
总之,本研究通过gRNA-(miR-HBV)-gRNA三联表达框架联合CRISPR/Cas9和RNA干扰技术高效破坏cccDNA,促进HBV清除,为慢乙肝抗病毒治疗提供了新的思路。该项研究得到国家十二五重大科技专项计划“艾滋病和病毒性肝炎等重大传染病防治”项目和国家自然科学基金的支持。
论文链接:https://www.ncbi.nlm.nih.gov/pubmed/28839466
这种技术,以前曾被用来研究植物和蠕虫等,但直到现在才发现它对哺乳动物细胞也有效。
如果把这个思路用于医疗,使致病的基因“沉默”下来,不就可以治好许多疾病吗?而哈佛医学院的研究人员首次用RNA干扰使活体动物的致病基因“沉默”。美国哈佛医学院的科学家在最新一期英国《自然医学》杂志上报告说,他们已经成功地利用这种核糖核酸干扰技术治愈了实验鼠的肝炎。如果进一步证实这种技术在人体内有效,将为许多疾病和感染提供新疗法。
在研究中,科学家干扰的目标是“凋亡相关蛋白质(FAs)基因”。这种蛋白质存在于细胞表面,它能够启动细胞的自杀程序,据认为,许多肝病是由于病毒、免疫系统失常或慢性酒精中毒激活了FAs基因所导致的。
研究人员给实验鼠尾部的血管注入旨在“沉默”FAs基因的小干扰RNA,发现有90%的肝细胞接收到了这种RNA分子,FAs蛋白质的产量变成原先的十分之一。随后,科学家给实验鼠注入大量FAs抗体,激活细胞自杀程序,模拟实验鼠患有严重肝炎的情形。
结果,未接受RNA干扰治疗的实验鼠有40%在3天内死亡。而40只接受过治疗的实验鼠有33只活了下来,10天后研究人员检查这些实验鼠的肝部,发现完全正常。
对于人来说,身体比老鼠大得多,血液循环系统也庞大。科学家目前正在寻找把小干扰RNA送到人体特定部位的方法,以便验证RNA干扰技术在人体中的效果。
在此,我只是抛砖引玉,向大家简单介绍一种新的技术,希望对其感兴趣的同仁多多发表,也希望版主给予支持。
简单来说,Off-target效应就是指干扰shRNA序列进入了microRNA途径,通过microRNA途径,其可以不受完全互补的限制而调控大量靶基因的表达。原本需要19~23nt的RNA序列完全互补才能发生干扰作用,而如果进入microRNA途径,只需要11~15nt互补就可以产生干扰效果,这使得siRNA可能与非靶基因结合而导致非靶基因沉默,造成脱靶。 如果脱靶干扰的部分基因,正好与目的基因位于同一信号通路中,或者与目的基因的生物学功能相似,那么,如果因脱靶而干扰了其它基因,亦会造成和目的基因受到干扰后相同的细胞表型改变。而实际上,可能选择的这条shRNA序列并没有对目的基因造成有效干扰,或者虽然干扰了目的基因,但是并不会引起预期的细胞表型改变。
基于以上原因,自从Off-target效应被发现并被研究者们广泛认同后,越来越多的杂志要求研究者们在投稿时需要有相应的对照来说明Off-target效应。即您需要有相关对照或者实验来说明,您所获得的实验结果,不是由于Off-target效应而产生的。向左转|向右转
转录抑制
与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。
转录后抑制
不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。
翻译抑制
Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。
域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ和PIWI两个结构域,对于siRNA和目标mRNA相互作用,从而导致目标mRNA的切割或者翻译抑制过程,是必不可少的。同时,不同的AGO蛋白质有着不同的生物学功能。例如,在人当中,AGO2“筹划”了RISCs对于目标mRNA的切割过程;而AGO1 和AGO3则不具备这个功能。
Core RISC:是介导目标mRNA切割过程或者翻译抑制的最小的RNA-蛋白质复合物。在人和果蝇身上发现的分子量少于200kDa的RISCs可能就是core RISC的重要代表。AGO蛋白质和Core RISC密切相关。
Dicer (DCR):是RNAase Ⅲ家族中的一员,主要切割dsRNA或者茎环结构的RNA前体成为小RNAs分子。对应地,我们将这种小RNAs分子命名为siRNAs和miRNA。Dicer有着较多的结构域,最先在果蝇中发现,并且在不同的生物体上表现出很高的保守性。
Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNAi和miRNA通路与一些其他的通路密切联系,很可能借此调控生物体的生长发育过程。
Microprocessor:一种核内的复合物,主要由Drosha和Pasha两者组成,在miRNA的生物合成中促使原始的miRNA成为miRNA前体。
MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发育过程中有重要作用。
RISC loading complex (RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体和siRNA双螺旋;R2D2部分是非对称性的感受器,为RISC组装调整好siRNA的方向。miRISC loading complexes (miRLCs)的研究尚未报导,因为它的过程更为复杂,而且体外研究miRLCs的方法还没有建立。
RNA-induced initiation of transcriptional gene silencing (RITS):是一种组织染色质变型的复合物。RITS复合物也包含Dicer加工形成的siRNA和AGO蛋白质,通过结合到异染色质的基因池上来促使异染色质上基因的沉默。
RNA-induced silencing complex (RISC):一种RNA-蛋白质复合物,通过与目标mRNA完全或者部分的互补配对来实施切割或者翻译抑制功能。SiRNA组装siRISC,miRNA组装miRISC。RISCs(无论siRISC还是miRISC)包括两种类型:切割型和不切割型。研究表明,RISC当中的AGO蛋白质决定了RISC是切割型的还是不切割型的。
Slicer:在切割型RISC中的内切酶的另外一种表述方法。
Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。向左转|向右转
将EntransterTM-invivo与AmbioninvivosiRNA(作用于凝血因子VII)和阴性siRNA通过尾静脉注射成年小鼠,2天后,取动物肝脏检测。在mRNA水平和蛋白水平观察干扰效果。见上图,图中最左侧组为对照组注射阴性siRNA为3mg/kg,后边3组为每kg动物注射阳性siRNA量分别为1mg/kg,2mg/kg和3mg/kg情况。
根据推荐用量注射EntransterTM-invivo和siRNA(作用于LaminA/C)和阴性siRNA到成年小鼠。注射后2天收集相应的组织,分离RNA,用qRT-PCR分析LaminA/C基因的表达水平。图4为尾静脉结果,图5为各器官分别局部注射结果。
英格恩生物体内转染试剂,3天可完成动物体内转染实验,让动物干扰,基因敲除实验变得简单、快速有效!

