
Actin is a major cytoskeletal protein involved in diverse cellular functions including cell motility, adhesion, and morphology. Six different actin isoforms have been identified in vertebrates. There are four α isoforms: skeletal, cardiac, and two smooth muscle (enteric and aortic) actins, along with two cytoplasmic actins (β and γ). Actin exists in two principal forms, globular monomeric (G) actin, and filamentous polymeric (F) actin. The assembly and disassembly of actin filaments, and also their organization into functional networks, is regulated by a variety of actin-binding proteins (ABPs). Phosphorylation may also be important for regulating actin assembly and interaction with ABPs. In Dictyostelium, phosphorylation of Tyr-53 occurs in response to cell stress and this phosphorylation may alter actin polymerization. In B cells, SHP-1 tyrosine dephosphorylation of actin leads to actin filament depolymerization following BCR stimulation.
References

Immunocytochemical labeling of actin filaments in A7r5 cells. Methanol and acetone fixed cells were labeled with mouse monoclonal anti-Actin (AM2021) and rabbit polyclonal anti-Actin (AP1651). The antibodies were detected using Goat anti-Mouse or Goat anti-Rabbit DyLight® 594. Paraformaldehyde-fixed and NP-40-permeabilized cells were labeled with Phalloidin:FITC.
The products are are safely shipped at ambient temperature for both domestic and international shipments. Each product is guaranteed to match the specifications as indicated on the corresponding technical data sheet. Please store at -20C upon arrival for long term storage.
*All molecular weights (MW) are confirmed by comparison to Bio-Rad Rainbow Markers and to western blotmobilities of known proteins with similar MW.
Product References:
AM2021 Dutta, P et al. (2014) J Neurochem. 130(3):360 WB: rat brainAM2021 Muirhead, G et al. (2014) J Mol Neurosci. 53(1):125 WB: rat brainAM2021 Pritchard, AJ et al. (2014) PLoS One. 9(6):e99444 WB: mouse splenocytesThis kit contains:
CATALOG# | DESCRIPTION | SIZE | APPLICATIONS | SPECIES REACTIVITY | ICC DILUTION |
AP1651 | Actin (N-terminal region) Rabbit pAb | 50 μl | WB, E, IP, ICC, IHC | Hu, Rt, Ms, Ck | 1:50 |
AM2021 | Actin (C-terminal region) Mouse mAb | 50 μl | WB, E, ICC, IHC | Hu, Rt, Ms, Ck | 1:50 |
PF7501 | Phalloidin:FITC Reagent | 100 μl | ICC, IHC | Hu, Rt, Ms, Ck, F | 1:500 |
MS3031 | Anti-Mouse Ig:DyLight®594 Goat pAb | 100 μl | ICC, IHC | Ms | 1:200 |
RS3271 | Anti-Rabbit Ig:DyLight®594 Goat pAb | 100 μl | ICC, IHC | Rb | 1:200 |
KIT SUMMARY
The actin filament regualtion kit can be used to compare labeling between actin filaments and total actin. The kit contains two antibodies for detecting total actin, and Phalloidin:FITC for labeling actin filaments. In addition, secondary reagents conjugated to DyLight® 594 are included for dual labeling experiments with Phalloidin:FITC.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
我现在做关于细胞膜分子交联,然后用western检测多聚体的实验
遇到很大的困难
刚开始用真核细胞做,就发现细胞交联后提取蛋白,比未交联的细胞蛋白总量减少
后来用原核先提取蛋白做实验
发现交联终止后,做western交联的孔曝光没有条带,后来用同样的方法重新做了一次PAGE,染胶,发现蛋白不见了
为什么交联后蛋白减少或是不见了呢
我用的都是Pierce公司的交联剂,用过EGS和BOSCOES,都有同样的问题
方法是综合说明书和一片文献上来的
到底问题出在哪里呢
请各位大侠帮帮忙
实验卡在这里进行不下去了
我快急死了
请有经验的,用过交联剂的老师,同学多多指导
万分感谢!!
本人使用的Collagen是sigma公司的,TypeI,BovineCollagenSolution,浓度为6mg/ml,用浓度为1M的NaOH溶液进行中和。200微升Collagen用了30微升的NaOH溶液,在调PH过程中有絮状物质产生并有局部凝胶,然后将调好PH的Collagen放至细胞培养箱中进行培养,2个小时之后也没有凝胶。是NaOH溶液加多了还是没有搅拌均匀,现在还在摸索阶段,不知道具体该加多少NaOH,还有如何将溶液混合均匀是个问题。求大神指导
明胶与干酪素都是蛋白质类,其分子结构同属氨基酸,但前者比后者价格便宜很多,而且在我国的产盆很大,因此具有代替干酪素做涂料胶粘剂的可能性。
P酸+5碳糖+含氮碱基形成脱氧核酸【DNA】,通过转录+翻译【涉及到的有转移RNA,信使RNA】然后识别信使RNA上的碱基排列顺序,把密码子连接起来,同时转移RNA上核糖体脱落形成氨基酸,氨基酸的排列顺序
许多食品属于乳胶体(冰淇淋、豆奶),蛋白质成分在稳定这些胶态体系中通常起着重要的作用。天然乳胶体靠脂肪球“这种“膜”由三酰甘油、磷脂、不溶性脂蛋白和可溶性蛋白的连续吸附层所构成。蛋白质一般对水/油(W/O)型乳胶液的稳定性较差。这可能是因为大多数蛋白质的强亲水性使大量被吸附的蛋白质分子位于界面的水相一侧。蛋白质的表面活性不仅与蛋白质中氨基酸的组成、结构、立体构象、分子中极性和非极性残基的分布与比例,二硫键的数目与交联,以及分子的大小、形状和柔顺性等内在因素有关,而且与外界因素,甚至加工操作有关。凡是能影响蛋白质构象和亲水性与疏水性的环境因素,诸如pH、温度、离子强度和盐的种类、界面的组成、蛋白质浓度、糖类和低分子量表面活性剂,能量的输入,甚至形成界面加工的容器和操作顺序等,都将影响蛋白质的表面活性。
2.起泡性
食品泡沫通常是气泡在连续的液相或含可溶性表面活性剂的半固相中形成的分散体系。种类繁多的泡沫其质地大小不同,例如蛋白质酥皮、蛋糕、棉花糖和某些其他糖果产品、点心顶端配料、冰淇淋、蛋奶酥、啤酒泡沫、奶油冻和面包等。大多数情况下,气体是空气或CO2,连续相是含蛋白质的水溶液或悬浊液。某些食品泡沫是很复杂的胶态体系,例如冰淇淋中存在分散的和群集的脂肪球(多数是固体)、乳胶体(或悬浊液)、分散的冰晶悬浮体,多糖凝胶、糖和蛋白质的浓缩溶液以及空气气泡。各种泡沫的气泡大小不相同,直径从1微米到几cm不等,气泡的大小取决于多种因素,例如,液相的表面张力和粘度、输入的能量,分布均匀的细微气泡可以使食品产生稠性、细腻和松软性,提高分散性和风味感。
3.凝胶性
变性的蛋白质分子聚集并形成有序的蛋白质网络结构过程称为胶凝作用。胶凝是蛋白 质的重要功能性质,在许多食品的制备中起着主要作用,包括各种乳品、果冻、凝结蛋白、明胶凝胶、各种加热的碎肉或鱼制品、大豆蛋白质凝胶、膨化或喷丝的组织化植物蛋白和面包面团的制作等,中国人喜爱的豆腐食品,就是大豆蛋白胶凝作用的产物。蛋白质胶凝作用不仅可用来形成固态粘弹性凝胶,而且还能增稠,提高吸水性和颗粒粘结、乳状液或泡沫的稳定性。
4.溶解度
大豆蛋白质在溶解状态下才能发挥其在食品体系中的功能特性。大豆蛋白质的溶解度是指大豆蛋白质以胶体的形式分散到水中的能力。蛋白质分子的极性表面和所带的净电荷有助于分散体系的稳定。大豆蛋白质的溶解度可以用可溶性氮指数(NSI)和蛋白质分散度指数(PDI)两种方法表示。影响大豆蛋白质溶解度的因素主要包括温度、pH和无机盐。

