| BAY 41-2272Activator of soluble guanylyl cyclase (sGC) |

Sample solution is provided at 25 µL, 10mM.
Nature.2017 Jan 19;541(7637):417-420.
Nature.2018 Nov;563(7731):407-411.
Nature.2018 Jun 13.
Nature.2018 Jun 27.
Nature.2018 Mar 29;555(7698):673-677.
Nature.2017 Sep 7;549(7670):96-100.
Nature.2016 Apr 21;532(7599):398-401.
Science.2016 Aug 5;353(6299)594-8
Nat Nanotechnol.2017 Dec;12(12):1190-1198.
Nature Biotechnology.2017 Jun;35(6):569-576
Nat Med.2018 Sep 17.
Cell.2018 Dec 21. pii: S0092-8674(18)31561-7.
Cell.Available online 25 October 2018.
Cell.2018 Sep 27. pii: S0092-8674(18)31183-8.
Cell.2018 Jun 28;174(1):172-186.e21.
Cell.2018 Feb 22;172(5):1007-1021.e17.
Cell.2017 Nov 30;171(6):1284-1300.e21.
Cell.2017 Aug 17. pii: S0092-8674(17)30869-3.
Cell.2017 Jul 13;170(2):312-323
Nat Med.2018 Jan 29.
Nat Med.2017 Nov;23(11):1342-1351.
Cell.2017 Apr 6;169(2):286-300.
Cell.2015 Aug 27;162(5):987-1002.
Cell.2015 Feb 12;160(4):729-44.
Nature Medicine.2017 Apr;23(4):493-500.
Cancer Cell.2018 May 14;33(5):905-921.e5.
Cancer Cell.2018 Apr 9;33(4):752-769.e8.
Cancer Cell.2018 Mar 12;33(3):401-416.e8.
Cancer Cell.2017 Aug 14;32(2):253-267.e5.
Nat Methods.2018 Jul;15(7):523-526.
Cell Stem Cell.2018 May 3;22(5):769-778.e4.
Cell Stem Cell.2017 Nov 20. pii: S1934-5909(17)30375-2.Quality Control & MSDS
- View current batch:
- Purity = 98.00%
- COA (Certificate Of Analysis)
- MSDS (Material Safety Data Sheet)
- Datasheet
Chemical structure


BAY 41-2272 Dilution Calculator
calculate

BAY 41-2272 Molarity Calculator
calculate
| Cas No. | 256376-24-6 | SDF | Download SDF |
| Chemical Name | 5-cyclopropyl-2-(1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)pyrimidin-4-amine | ||
| Canonical SMILES | FC1=CC=CC=C1CN2N=C(C3=CC=CN=C23)C(N=C4N)=NC=C4C5CC5 | ||
| Formula | C20H17FN6 | M.Wt | 360.39 |
| Solubility | Soluble in DMSO | Storage | Store at -20°C |
| Physical Appearance | A crystalline solid | Shipping Condition | Evaluation sample solution : ship with blue ice.All other available size:ship with RT , or blue ice upon request |
| General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. | ||
BAY 41-2272 is an activator of nitric oxide-sensitive guanylyl cyclase (NO-sensitive GC) with EC50 values of 0.3 μmol/L and 3 μmol/L in the presence and absence of 100 nmol/L DEA-NO, respectively [1].
NO-sensitive GC catalyzes the cGMP formation. It is generally considered as the most important receptor of the signaling molecule NO. The NO/cGMP pathway plays a role in many physiological processes such as the inhibition of platelet aggregation and the relaxation of smooth muscle [1].
In platelets, GSNO at 3 μmol/L (a submaximally effective concentration) was used to assess a possible sensitizing effect of BAY 41-2272 on NO-sensitive GC. The cGMP response resulted from the application of NO at this concentration in the absence of BAY 41-2272 was only marginal. In the presence of BAY 41-2272 at 100 μmol/L, treatment with GSNO at 3 μmol/L resulted in a rapid increase in cGMP up to 1000 pmol/109 platelets [1].
The sGC/NO system was implicated in the pathogenesis of erectile dysfunction. Intravenous treatment with BAY 41-2272 at 1 mg/kg induced only a very weak erection in rabbits, with a maximal length of exposed mucosa of about 3mm at 10 min, and the effect lasted for approximate 30 minutes. SNP is a NO donor. Simultaneous administration of SNP potentiated the effect of BAY 41-2272. Intravenous treatment with SNP at 0.2 mg/kg resulted in a short-lasting erection of about 5~10 minutes, and a peak length of uncovered penile mucosa of 5 mm. Administration with BAY 41-2272 at 1 mg/kg IV followed by SNP at 0.2 mg/kg IV 5 minutes later, resulted in lengths of ensuing erection with a mean of 15 mm, longer than lengths resulted from treatments with two compounds separately [2].
References: [1]. Mullershausen F, Russwurm M, Friebe A, et al. Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation, 2004, 109(14): 1711-1713.[2]. Bischoff E, Schramm M, Straub A, et al. BAY 41-2272: a stimulator of soluble guanylyl cyclase induces nitric oxide-dependent penile erection in vivo. Urology, 2003, 61(2): 464-467.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
请各位高手指点一下小弟吧!
1。什么叫切断条件。是不是不能切断的话就不能释放出药物
2。透膜性是什么意思。是不是指如果药物要进入细胞内的话就要选有透膜性的交联剂
3。间臂长度是不是臂越长越好
4。iodinatable是什么意思
谢谢大家!
==============
请遵守药学区发帖格式!请参阅本版“发帖须知新手指南”!
多谢您的支持!
甲苯二异氰酸酯(TDI)有两种异构体:2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯。甲苯二异氰酸酯是水白色或淡黄色液体,具有强烈的刺激性气味,在人体中具有积聚性和潜伏性,对皮肤、眼睛和呼吸道有强烈刺激作用,吸入高浓度的甲苯二异氰酸酯蒸气会引起支气管炎、支气管肺炎和肺水肿;液体与皮肤接触可引起皮炎。液体与眼睛接触可引起严重刺激作用,如果不加以治疗,可能导致永久性损伤。长期接触甲苯二异氰酸酯可引起慢性支气管炎。对甲苯二异氰酸酯过敏者,可能引起气喘、伴气喘、呼吸困难和咳嗽。
与乙醚、二甘醇、丙酮、四氯化碳、苯、氯苯、煤油、橄榄油混溶。能与含羟基的化合物、水、胺和具有活泼氢原子的化合物反应生成氨基甲酸酯、脲、氨基脲等。甲苯用混酸硝化得到2,4-和2,6-二硝基甲苯,然后在镍催化剂存在下加氢还原得到2,4-和2,6-二氨基甲苯,再在氯苯溶液中与光气反应制得。主要作为聚氨酯树脂的生产原料,用于生产聚氯酯泡抹塑料、涂料、橡胶、粘合剂、密封剂等。也可用作橡胶硫化剂、蛋白质交联剂等。包括泡沫塑料;聚氨酯涂料;聚氨酯橡胶;聚酰亚胺纤维和胶粘剂等也有一些应用。有2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯(TDI)两种异构体。按两种异构体含量的不同,工业上有三种规格的产品:(1)TDI-65含2,4-TDI65%,2,6-TDI35%;(2)TDI-80含2,4-TDI80%,2,6-TDI20%,最为常见;(3)TDI-100含2,4-TDI100%。与水作用产生二氧化碳。易与含有活性氢原子的化合物作用。与二元醇作用而成线型聚氨基甲酸酯或聚氨酯树脂。
1.用这个人类膜蛋白c端末短肽(14个残基,478-492)偶联KLH生产的兔多克隆抗体(abcam公司产品)
2.用大鼠的同源膜蛋白c端(具体哪一段不清楚)生产的兔多克隆抗体(abcam公司产品),我比对过人和大鼠的这个膜蛋白,同源性很高,c端完全一样(这里也很困惑公司为什么说是大鼠来源的)
3.用这个人类膜蛋白两个跨膜区之间的一个loop环序列(42个残基,218-260)生产的兔多克隆抗体(santa公司产品)
这三个抗体理论上来讲哪个更好些呢?请有经验的大虾给予指点!
另:我听说abcam的抗体比santa好,是吗?
在线等,急!
许多食品属于乳胶体(冰淇淋、豆奶),蛋白质成分在稳定这些胶态体系中通常起着重要的作用。天然乳胶体靠脂肪球“这种“膜”由三酰甘油、磷脂、不溶性脂蛋白和可溶性蛋白的连续吸附层所构成。蛋白质一般对水/油(W/O)型乳胶液的稳定性较差。这可能是因为大多数蛋白质的强亲水性使大量被吸附的蛋白质分子位于界面的水相一侧。蛋白质的表面活性不仅与蛋白质中氨基酸的组成、结构、立体构象、分子中极性和非极性残基的分布与比例,二硫键的数目与交联,以及分子的大小、形状和柔顺性等内在因素有关,而且与外界因素,甚至加工操作有关。凡是能影响蛋白质构象和亲水性与疏水性的环境因素,诸如pH、温度、离子强度和盐的种类、界面的组成、蛋白质浓度、糖类和低分子量表面活性剂,能量的输入,甚至形成界面加工的容器和操作顺序等,都将影响蛋白质的表面活性。
2.起泡性
食品泡沫通常是气泡在连续的液相或含可溶性表面活性剂的半固相中形成的分散体系。种类繁多的泡沫其质地大小不同,例如蛋白质酥皮、蛋糕、棉花糖和某些其他糖果产品、点心顶端配料、冰淇淋、蛋奶酥、啤酒泡沫、奶油冻和面包等。大多数情况下,气体是空气或CO2,连续相是含蛋白质的水溶液或悬浊液。某些食品泡沫是很复杂的胶态体系,例如冰淇淋中存在分散的和群集的脂肪球(多数是固体)、乳胶体(或悬浊液)、分散的冰晶悬浮体,多糖凝胶、糖和蛋白质的浓缩溶液以及空气气泡。各种泡沫的气泡大小不相同,直径从1微米到几cm不等,气泡的大小取决于多种因素,例如,液相的表面张力和粘度、输入的能量,分布均匀的细微气泡可以使食品产生稠性、细腻和松软性,提高分散性和风味感。
3.凝胶性
变性的蛋白质分子聚集并形成有序的蛋白质网络结构过程称为胶凝作用。胶凝是蛋白 质的重要功能性质,在许多食品的制备中起着主要作用,包括各种乳品、果冻、凝结蛋白、明胶凝胶、各种加热的碎肉或鱼制品、大豆蛋白质凝胶、膨化或喷丝的组织化植物蛋白和面包面团的制作等,中国人喜爱的豆腐食品,就是大豆蛋白胶凝作用的产物。蛋白质胶凝作用不仅可用来形成固态粘弹性凝胶,而且还能增稠,提高吸水性和颗粒粘结、乳状液或泡沫的稳定性。
4.溶解度
大豆蛋白质在溶解状态下才能发挥其在食品体系中的功能特性。大豆蛋白质的溶解度是指大豆蛋白质以胶体的形式分散到水中的能力。蛋白质分子的极性表面和所带的净电荷有助于分散体系的稳定。大豆蛋白质的溶解度可以用可溶性氮指数(NSI)和蛋白质分散度指数(PDI)两种方法表示。影响大豆蛋白质溶解度的因素主要包括温度、pH和无机盐。
橡胶的硫化、不饱和树脂的交联、环氧树脂的熟化等都是化学交联的例子。
通过化学交联可改善聚合物的性能。如聚乙烯的化学交联可提高其强度和耐热性,又如皮革的鞣制过程是利用其蛋白质分子与甲醛作用,生成交联桥,以至失去溶解性。

