商品信息
联系客服

郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
HighpurityGalactomannan(Carob;LowViscosity)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity>94%.Galactose:Mannose=22:78.Treatedwithsodiumbobohydridetoreducebackgroundcolour.Fortheassayofβ-mannanasebyreducingsugarprocedures.Viscosity~2CST.
α-D-galactosidaseactivityandgalactomannanandgalactosylsucroseoligosaccharidedepletioningerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1974).Phytochemistry,13(9),1747-1757.
LinktoArticle
ReadAbstract
Germinatingseedsoflucerne,guar,carobandsoybeaninitiallydepletedraffinoseseriesoligosaccharidesandthengalactomannan.Thisdepletionwasaccompaniedbyarapidincreaseandthenadecreaseinα-galactosidaselevels.Lucerneandguarcontainedtwoα-galactosidaseactivities,carobthreeandsoybeanfour.Oneoftheseineachplant,fromitslocationintheendosperm,timeofappearanceandkineticbehaviour,appearedtobeprimarilyinvolvedingalactomannanhydrolysis.ThisenzymeinlucernehadMWof23000andcouldnotbeseparatedfromβ-mannanaseby(NH4)2SO4fractionation,DEAE,CMorSE-cellulosechromatographyorgelfiltration,butonlybypolyacrylamidegelelectrophoresis.Inguar,carobandsoybean,itcouldbeseparatedbyion-exchangechromatographyandgelfiltration.Inlucerne,carobandguarmostofthetotalincreaseinactivitywasduetothisenzyme.Theotherα-galactosidaseshadMWsofabout35000andcouldbeseparatedfromβ-mannanasebydissection,ionexchangecellulosechromatographyandgelfiltration.Theywerelocatedinthecotyledon-embryoandappearedtobeprimarilyinvolvedingalactosylsucroseoligosaccharidehydrolysis.
Galactomannanstructureandβ-mannanaseandβ-mannosidaseactivityingerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1975).Phytochemistry,14,1187-1194.
LinktoArticle
ReadAbstract
Structuralchangesingalactomannanongerminationoflucerne,carob,honeylocust,guarandsoybeanseeds,asmeasuredbyviscosity,elutionvolumesongelfiltrationandultra-centrifugationwereslightconsistentwitharapidandcompletehydrolysisofamoleculeoncehydrolysisofthemannanchainstarts.β-Mannanaseactivityincreasedandthendecreased,parallelinggalactomannandepletion.Multipleformsofβ-mannanasewereisolatedandthesewerelocatedintheendosperm.β-MannanasehadlimitedABIlitytohydrolysegalactomannanswithhighgalactosecontents.Seedscontainingthesegalactomannanshadveryactiveα-galactosidases.β-Mannosidaseswerepresentinbothendospermandcotyledon-embryoandcouldbeseparatedchromatographically.Thelevelofactivitywasjustsufficienttoaccountformannoseproductionfrommanno-oligosaccharides.
Galactomannansandagalactoglucomannaninlegumeseedendosperms:Structuralrequirementsforβ-mannanasehydrolysis.
McCleary,B.V.,Matheson,N.K.&Small,D.B.(1976).Phytochemistry,15(7),1111-1117.
LinktoArticle
ReadAbstract
Aseriesofgalactomannanswithvaryingdegreesofgalactosesubstitutionhavebeenextractedfromtheendospermsoflegumeseedswithwaterandalkaliandtheamountofsubstitutionrequiredforwatersolubilityhasbeendetermined.Somewereheterogeneouswithrespecttothedegreeofgalactosesubstitution.Thestructuralrequirementsforhydrolysisbyplantβ-mannanasehavebeenstudiedusingtherelativeratesandextentsofhydrolysisofthesegalactomannans.Amoredetailedexaminationoftheproductsofhydrolysisofcarobgalactomannanhasbeenmade.Atleasttwocontiguousanhydromannoseunitsappeartobeneededforscission.Thisissimilartotherequirementforhydrolysisbymicrobialenzymes.Judastree(Cercissiliquastrum)endospermcontainedapolysaccharidewithauniquecompositionforalegumeseedreserve.Gelchromatographyandelectrophoresisoncelluloseacetateindicatedhomogeneity.Hydrolysiswithamixtureofβ-mannanaseandα-galactosidasegaveaglucose-mannosedisaccharideandacetolysisgaveagalactose-mannose.Theseresults,aswellasthepatternofhydrolysisbyβ-mannanasewereconsistentwithagalactoglucomannanstructure.
Modesofactionofβ-mannanaseenzymesofdiverseoriginonlegumeseedgalactomannans.
McCleary,B.V.(1979).Phytochemistry,18(5),757-763.
LinktoArticle
ReadAbstract
β-MannanaseactivitiesinthecommercialenzymepreparationsDriselaseandCellulase,inculturesolutionsofBacillussubtilis(TX1),incommercialsnailgut(Helixpomatia)preparationsandingerminatedseedsoflucerne,Leucaenaleucocephalaandhoneylocust,havebeenpurifiedbysubstrateaffinitychromatographyonglucomannan-AH-Sepharose.Onisoelectricfocusing,multipleproteinbandswerefound,allofwhichhadβ-mannanaseactivity.EachpreparationappearedasasinglemajorbandonSDS-polyacrylamidegelelectrophoresis.Theenzymesvariedintheirfinalspecificactivities,Kmvalues,optimalpH,isoelectricpointsandpHandtemperaturestabilitiesbuthadsimilarMWs.Theenzymeshavedifferentabilitiestohydrolysegalactomannanswhicharehighlysubstitutedwithgalactose.ThepreparationsDriselaseandCellulasecontainβ-mannanaseswhichcanattackhighlysubstitutedgalactomannansatpointsofsingleunsubstitutedD-mannosylresiduesiftheD-galactoseresiduesinthevicinityofthebondtobehydrolysedareallononlyonesideofthemainchain.
AnenzymictechniqueforthequantitationofgalactomannaninguarSeeds.
McCleary,B.V.(1981).Lebensmittel-Wissenschaft&Technologie,14,56-59.
LinktoArticle
ReadAbstract
Anenzymictechniquehasbeendevelopedfortherapidandaccuratequantitationofthegalactomannancontentofguarseedsandmillingfractions.Thetechniqueinvolvesthemeasurementofthegalactosecomponentofgalactomannansusinggalactosedehydrogenase.Thegalactomannansareconvertedtogalactoseandmanno-oligosaccharidesusingpartiallypurifiedenzymesfromacommercialpreparationandfromgerminatedguarseeds.Simpleprocedureshavebeendevisedforthepreparationoftheseenzymes.Applicationofthetechniquetoanumberofguarvarietiesgavevaluesforthegalactomannancontentrangingfrom22.7to30.8%ofseedweight.
Purificationandpropertiesofaβ-D-mannosidemannohydrolasefromguar.
McCleary,B.V.(1982),CarbohydrateResearch,101(1),75-92.
LinktoArticle
ReadAbstract
Aβ-D-mannosidemannohydrolaseenzymehasbeenpurifiedtohomogeneityfromgerminatedguar-seeds.Difficultiesassociatedwiththeextractionandpurificationappearedtobeduetoaninteractionoftheenzymewithotherproteinmaterial.Thepurifiedenzymehydrolysedvariousnaturalandsyntheticsubstrates,includingβ-D-manno-oligosaccharidesandreducedβ-D-manno-oligosaccharidesofdegreeofpolymerisation2to6,aswellasp-nitrophenyl,naphthyl,andmethylumbelliferylβ-D-mannopyranosides.Thepreferred,naturalsubstratewasβ-D-mannopentaose,whichwashydrolysedattwicetherateofβ-D-mannotetraoseandfivetimestherateofβ-D-mannotriose.Thisresult,togetherwiththeobservationthatα-D-mannoseisreleasedonhydrolysis,indicatesthattheenzymeisanexo-β-D-mannanase.
Preparative–scaleisolationandcharacterisationof61-α-D-galactosyl-(1→4)-β-D-mannobioseand62-α-D-galactosyl-(1→4)-β-D-mannobiose.
McCleary,B.V.,Taravel,F.R.&Cheetham,N.W.H.(1982).CarbohydrateResearch,104(2),285-297.
LinktoArticle
ReadAbstract
N.m.r.,enzymic,andchemicaltechniqueshavebeenusedtocharacterisetheD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobandL.leucocephalaD-galacto-D-mannansbyDriselaseβ-D-mannanase.Theseoligosaccharideswereshowntobeexclusively61-α-D-galactosyl-β-D-mannobioseand61-α-D-galactosyl-β-D-mannotriose.FurThermore,theseweretheonlyD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobD-galacto-D-mannanbyβ-D-mannanasesfromothersources,includingBacillussubtilis,Aspergillusniger,Helixpomatiagutsolution,andgerminatedlegumes.Acidhydrolysisoflucernegalactomannanyielded61-α-D-galactosyl-β-D-mannobioseand62-α-D-galactosyl-β-D-mannobiose.
β-D-mannosidasefromHelixpomatia.
McCleary,B.V.(1983).CarbohydrateResearch,111(2),297-310.
LinktoArticle
ReadAbstract
β-D-Mannosidase(β-D-mannosidemannohydrolaseEC3.2.1.25)waspurified160-foldfromcrudegut-solutionofHelixpomatiabythreechromatographicstepsandthengaveasingleproteinband(mol.wt.94,000)onSDS-gelelectrophoresis,andthreeproteinbands(ofalmostidenticalisoelectricpoints)onthin-layeriso-electricfocusing.Eachoftheseproteinbandshadenzymeactivity.Thespecificactivityofthepurifiedenzymeonp-nitrophenylβ-D-mannopyranosidewas1694nkat/mgat40°anditwasdevoidofα-D-mannosidase,β-D-galactosidase,2-acet-amido-2-deoxy-D-glucosidase,(1→4)-β-D-mannanase,and(1→4)-β-D-glucanaseactivities,almostdevoidofα-D-galactosidaseactivity,andcontaminatedwith<0.02% of="" β-d-glucosidase="" activity.="" the="" purified="" enzyme="" had="" the="" same="">0.02%>Kmforborohydride-reducedβ-D-manno-oligosaccharidesofd.p.3-5(12.5mM).Theinitialrateofhydrolysisof(1→4)-linkedβ-D-manno-oligosaccharidesofd.p.2-5andofreducedβ-D-manno-oligosaccharidesofd.p.3-5wasthesame,ando-nitrophenyl,methylumbelliferyl,andnaphthylβ-D-mannopyranosideswerereADIlyhydrolysed.β-D-Mannobiosewashydrolysedatarate~25timesthatof61-α-D-galactosyl-β-D-mannobioseand63-α-D-galactosyl-β-D-mannotetraose,andat~90timestherateforβ-D-mannobi-itol.
Enzymicinteractionsinthehydrolysisofgalactomannaningerminatingguar:Theroleofexo-β-mannanase.
McCleary,B.V.(1983).Phytochemistry,22(3),649-658.
LinktoArticle
ReadAbstract
Hydrolysisofgalactomannaninendospermsofgerminatingguarisduetothecombinedactionofthreeenzymes,α-galactosidase,β-mannanaseandexo-β-mannanase.α-Galactosidaseandexo-β-mannanaseactivitiesoccurbothinendospermandcotyledontissuebutβ-mannanaseoccursonlyinendosperms.Onseedgermination,β-mannanaseandendospermicα-galactosidasearesynthesizedandactivitychangesparallelgalactomannandegradation.Galactomannandegradationandsynthesisofthesetwoenzymesareinhibitedbycycloheximide.Incontrast,endospermicexo-β-mannanaseisnotsynthesizedonseedgermination,butratherisalreadypresentthroughoutendospermtissue.Ithasnoactiononnativegalactomannan.α-Galactosidase,β-mannanaseandexo-β-mannanasehavebeenpurifiedtohomogeneityandtheirseparateandcombinedactioninthehydrolysisofgalactomannanandeffectontherateofuptakeofcarbohydratebycotyledons,studied.Resultsobtainedindicatedthatthesethreeactivitiesaresufficienttoaccountforgalactomannandegradationinvivoand,further,thatallthreearerequired.Cotyledonscontainanactiveexo-β-mannanaseandsugar-uptakeexperimentshaveshownthatcotyledonscanabsorbmannobioseintact,indicatingthatthisenzymeisinvolvedinthecompletedegradationofgalactomannanonseedgermination.
Characterisationoftheoligosaccharidesproducedonhydrolysisofgalactomannanwithβ-D-mannase.
McCleary,B.V.,Nurthen,E.,Taravel,F.R.&Joseleau,J.P.(1983).CarbohydrateResearch,118,91-109.
LinktoArticle
ReadAbstract
Treatmentofhot-water-solublecarobgalactomannanwithβ-D-mannanasesfromA.nigerorlucerneseedaffordsanarrayofD-galactose-containingβ-D-mannosaccharidesaswellasβ-D-manno-biose,-triose,and-tetraose(lucerne-seedenzymeonly).TheD-galactose-containingβ-D-mannosaccharidesofd.p.3–9producedbyA.nigerβ-D-mannanasehavebeencharacterised,usingenzymic,n.m.r.,andchemicaltechniques,as61-α-D-galactosyl-β-D-mannobiose,61-α-D-galactosyl-β-D-mannotriose,63,64-di-α-D-galactosyl-β-D-mannopentaose(theonlyheptasaccharide),and63,64-di-α-D-galactosyl-β-D-mannohexaose,64,65-di-α-D-galactosyl-β-D-mannohexaose,and61,63,64-tri-α-D-galactosyl-β-D-mannopentaose(theonlyoctasaccharides).Fournonasaccharideshavealsobeencharacterised.Penta-andhexa-saccharideswereabsent.Lucerne-seedβ-D-mannanaseproducedthesamebranchedtri-,tetra-andhepta-saccharides,andalsopenta-andhexa-saccharidesthatwerecharacterisedas61-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannotetraose,61,63-di-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannopentaose,and64-α-D-galactosyl-β-D-mannopentaose.NoneoftheoligosaccharidescontainedaD-galactosestubontheterminalD-mannosylgroupnorweretheysubstitutedonthesecondD-mannosylresiduefromthereducingterminal.
Actionpatternsandsubstrate-bindingrequirementsofβ-D-mannanasewithmannosaccharidesandmannan-typepolysaccharides.
McCleary,B.V.&Matheson,N.K.(1983).CarbohydrateResearch,119,191-219.
LinktoArticle
ReadAbstract
Purified(1→4)-β-D-mannanasefromAspergillusnigerandlucerneseedshasbeenincubatedwithmannosaccharidesandend-reduced(1→4)-β-D-mannosaccharidesand,fromtheproductsofhydrolysis,acyclicreaction-sequencehasbeenproposed.Fromtheheterosaccharidesreleasedbyhydrolysisofthehot-water-solublefractionofcarobgalactomannanbyA.nigerβ-D-mannanase,apatternofbindingbetweentheβ-D-mannanchainandtheenzymehasbeendeduced.Theproductsofhydrolysiswiththeβ-D-mannanasesfromIrpexlacteus,Helixpomatia,Bacillussubtilis,andlucerneandguarseedshavealsobeendetermined,andthedifferencesfromtheactionofA.nigerβ-D-mannanaserelatedtominordifferencesinsubstratebinding.Theproductsofhydrolysisofglucomannanareconsistentwiththoseexpectedfromthebindingpatternproposedfromthehydrolysisofgalactomannan.
Thefinestructuresofcarobandguargalactomannans.
McCleary,B.V.,Clark,A.H.,Dea,I.C.M.&Rees,D.A.(1985).CarbohydrateResearch,139,237-260.
LinktoArticle
ReadAbstract
ThedistributionofD-galactosylgroupsalongtheD-mannanbackbone(finestructure)ofcarobandguargalactomannanshasbeenstudiedbyacomputeranalysisoftheamountsandstructuresofoligosaccharidesreleasedonhydrolysisofthepolymerswithtwohighlypurifiedβ-D-mannanasesisolatedfromgerminatedguarseedandfromAspergillusnigercultures.Computerprogrammesweredevelopedwhichaccountedforthespecificsubsite-bindingrequirementsoftheβ-D-mannanasesandwhichsimulatedthesynthesisofgalactomannanbyprocessesinwhichtheD-galactosylgroupsweretransferredtothegrowingD-mannanchainineitherastatisticallyrandommannerorasinfluencedbynearest-neighbour/second-nearest-neighboursubstitution.Suchamodelwaschosenasitisconsistentwiththeknownpatternofsynthesisofsimilarpolysaccharides,forexample,xyloglucan;also,additiontoapreformedmannanchainwouldbeunlikely,duetotheinsolublenatureofsuchpolymers.TheD-galactosedistributionincarobgalactomannanandinthehot-andcold-water-solublefractionsofcarobgalactomannanhasbeenshowntobenon-regular,withahighproportionofsubstitutedcouplets,lesseramountsoftriplets,andanabsenceofblocksofsubstitution.TheprobabilityofsequencesinwhichalternateD-mannosylresiduesaresubstitutedislow.TheprobabilitydistributionofblocksizesforunsubstitutedD-mannosylresiduesindicatesthatthereisahigherproportionofblocksofintermediatesizethanwouldbepresentinagalactomannanwithastatisticallyrandomD-galactosedistribution.Basedonthealmostidenticalpatternsofamountsofoligosaccharidesproducedonhydrolysiswithβ-D-mannanase,itappearsthatgalactomannansfromseedofawiderangeofcarobvaritieshavethesamefine-structure.TheD-galactosedistributioninguar-seedgalactomannanalsoappearstobenon-regular,andgalactomannansfromdifferentguar-seedvarietiesappeartohavethesamefine-structure.
Effectofgalactose-substitution-patternsontheinteractionpropertiesofgalactomannas.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).CarbohydrateResearch,147(2),275-294.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentsofD-galactosehavebeencomparedforself-associationandtheirinteractionpropertieswithagaroseandxanthan.Whereas,ingeneral,themostinteractivegalactomannansarethoseinwhichthe(1→4)-β-D-mannanchainisleastsubstitutedbyα-D-galactosylstubs,evidenceispresentedwhichindicatesthatthedistributionofD-galactosylgroupsalongthebackbone(finestructure)canhaveasignificanteffectontheinteractionproperties.Forgalactomannanscontaining<30% of="" d-galactose,="" those="" which="" contain="" a="" higher="" frequency="" of="" unsubstituted="" blocks="" of="" intermediate="" length="" in="" the="" β-d-mannan="" chain="" are="" most="" interactive.="" for="" galactomannans="" containing="">40%ofD-galactose,thosewhichcontainahigherfrequencyofexactlyalternatingregionsintheβ-D-mannanchainaremostinteractive.Thisselectivity,onthebasisofgalactomannanfine-structure,inmixedpolysaccharideinteractionsinvitrocouldmimictheselectivityofbindingofbranchedplant-cell-wallpolysaccharidesinBIOLOGicalsystems.30%>
Effectofthemolecularfinestructureofgalactomannansontheirinteractionproperties-theroleofunsubstitutedsides.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).FoodHydrocolloids,1(2),129-140.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentofD-galactosehavebeencomparedforself-association,andtheirinteractionpropertieswithagaroseandxanthan.TheresultspresentedindicatethatingeneralthemostinteractivegalactomannansarethoseinwhichtheD-mannanmainchainbearsfewestD-galactosestubs,andconfirmthatthedistributionofD-galactosegroupsalongthemainchaincanhaveasignificanteffectontheinteractivepropertiesofthegalactomannans.Ithasbeenshownthatfreeze—thawprecipitationofgalactomannansrequiresregionsoftotallyunsubstitutedD-mannoseresiduesalongthemainchain,andthatathresholdforsignificantfreeze—thawprecipitationoccursataweight-averagelengthoftotallyunsubstitutedresiduesofapproximatelysix.ForgalactomannanshavingstructuresabovethisthresholdtheirinteractivepropertieswithotherpolysaccharidesarecontrolledbystructuralfeaturesassociatedwithtotallyunsubstitutedregionsoftheD-mannanbackbone.Incontrast,forgalactomannansbelowthisthreshold,theirinteractivepropertiesarecontrolledbystructuralfeaturesassociatedwithunsubstitutedsidesofD-mannanbackbone.
GalactomannanchangesindevelopingGleditsiaTriacanthosSeeds.
Mallett,I.,McCleary,B.V.&Matheson,N.K.(1987).Phytochemistry,26(7),1889-1894.
LinktoArticle
ReadAbstract
GalactomannanhasbeenextractedfromtheendospermofseedsofGleditsiatriacanthos(honeylocust)atdifferentstagesofdevelopment,whentheseedwasaccumulatingstoragematerial.Propertiesofthedifferentsampleshavebeenstudied.Themolecularsizedistributionbecamemoredisperseasgalactomannanaccumulatedandthegalactose:mannoseratiodecreasedslightly.SomepossIBLereasonsforthesechangesarediscussed.
Understandinghownoncatalyticcarbohydratebindingmodulescandisplayspecificityforxyloglucan.
Luís,A.S.,Venditto,I.,Temple,M.J.,Rogowski,A.,Baslé,A.,Xue,J.,Knox,J.P.,Prates,J.A.M.,Ferreira,L.M.A.,Fontes,C.M.G.A.,Najmudin,S.&Gilbert,H.J.(2013).JournalofBiologicalChemistry,288(7),4799-4809.
LinktoArticle
ReadAbstract
Plantbiomassiscentraltothecarboncycleandtoenvironmentallysustainableindustriesexemplifiedbythebiofuelsector.Plantcellwalldegradingenzymesgenerallycontainnoncatalyticcarbohydratebindingmodules(CBMs)thatfulfilatargetingfunction,whichenhancescatalysis.CBMsthatbindβ-glucanchainsoftendisplaybroadspecificityrecognizingβ1,4-glucans(cellulose),β1,3-β1,4-mixedlinkedglucansandxyloglucan,aβ1,4-glucandecoratedwithα-1,6-xyloseresidues,bytargetingstructurescommontothethreepolysaccharides.Thus,CBMsthatrecognizexyloglucantargettheβ1,4-glucanbackboneandonlyaccommodatethexylosedecorations.HereweshowthattwocloselyrelatedCBMs,CBM65AandCBM65B,derivedfromEcCel5A,aEubacteriumcellulosolvensendoglucanase,bindtoarangeofβ-glucansbut,uniquely,displaysignificantpreferenceforxyloglucan.ThestructuresofthetwoCBMsrevealaβ-sandwichfold.Theligandbindingsitecomprisestheβ-sheetthatformstheconcavesurfaceoftheproteins.Bindingtothebackbonechainsofβ-glucansismediatedprimarilybyfivearomaticresiduesthatalsomakehydrophobicinteractionswiththexylosesidechainsofxyloglucan,conferringthedistinctivespecificityoftheCBMsforthedecoratedpolysaccharide.Significantly,andincontrasttootherCBMsthatrecognizeβ-glucans,CBM65Autilizesdifferentpolarresiduestobindcelluloseandmixedlinkedglucans.Thus,Gln106iscentraltocelluloserecognition,butisnotrequiredforbindingtomixedlinkedglucans.Thisreportrevealsthemechanismbywhichβ-glucan-specificCBMscandistinguishbetweenlinearandmixedlinkedglucans,andshowhowtheseCBMscanexploitanextensivehydrophobicplatformtotargetthesidechainsofdecoratedβ-glucans.
StructuralandThermodynamicDissectionofSpecificMannanRecognitionbyaCarbohydrateBindingModule,TmCBM27.
Boraston,A.B.,Revett,T.J.,Boraston,C.M.,Nurizzo,D.&Davies,G.J.(2003).Structure,11(6),665-675.
LinktoArticle
ReadAbstract
TheC-terminal176aminoacidsofaThermotogamaritimamannanase(Man5)constituteacarbohydratebindingmodule(CBM)thathasbeenclassifiedintoCBMfamily27.TheisolatedCBM27domain,namedTmCBM27,bindstightly(Kas105–106,M-1)toβ-1,4-mannooligosaccharides,carobgalactomannan,andkonjacglucomannan,butnottocellulose(insolubleandsoluble)orsolublebirchwoodxylan.TheX-raycrystalstructuresofnativeTmCBM27,aTmCBM27-mannohexaosecomplex,andaTmCBM27-63,64,-α-D-galactosyl-mannopentaosecomplexat2.0Å,1.6Å,and1.35Å,respectively,revealthebasisofTmCBM27"sspecificityformannans.Inparticular,thelattercomplex,whichisthefirststructureofaCBMincomplexwithabranchedplantcellwallpolysaccharide,illustrateshowthearchitectureofthebindingsitecaninfluencetherecognitionofnaturallysubstitutedpolysaccharides.
Atomatoendo-β-1,4-glucanase,SlCel9C1,representsadistinctsubclasswithanewfamilyofcarbohydratebindingmodules(CBM49).
Urbanowicz,B.R.,Catalá,C.,Irwin,D.,Wilson,D.B.,Ripoll,D.R.&Rose,J.K.C.(2007).JournalofBiologicalChemistry,282(16),12066-12074.
LinktoArticle
ReadAbstract
Acriticalstructuralfeatureofmanymicrobialendo-β-1,4-glucanases(EGases,orcellulases)isacarbohydratebindingmodule(CBM),whichisrequiredforeffectivecrystallinecellulosedegradation.However,CBMsareabsentfromplantEGasesthathavebeenbiochemicallycharacterizedtodate,andaccordingly,plantEGasesarenotgenerallythoughttohavethecapacitytodegradecrystallinecellulose.WereportthebiochemicalcharacterizationofatomatoEGase,SolanumlycopersicumCel8(SlCel9C1),withadistinctC-terminalnoncatalyticmodulethatrepresentsapreviouslyuncharacterizedfamilyofCBMs.InvitrobindingstudiesdemonstratedthatthismoduleindeedbindstocrystallinecelluloseandcansimilarlybindaspartofarecombinantchimericfusionproteincontaininganEGasecatalyticdomainfromthebacteriumThermobifidafusca.Site-directedmutagenesisstudiesshowthattryptophans559and573playaroleincrystallinecellulosebinding.TheSlCel9C1CBM,whichrepresentsanewCBMfamily(CBM49),isadefiningfeatureofanewstructuralsubclass(ClassC)ofplantEGases,withmemberspresentthroughouttheplantkingdom.Inaddition,theSlCel9C1catalyticdomainwasshowntohydrolyzeartificialcellulosicpolymers,celluloseoligosaccharides,andavarietyofplantcellwallpolysaccharides.
Cloning,expressioninPichiapastoris,andcharacterizationofathermostableGH5mannanendo-1,4-β-mannosidasefromAspergillusnigerBK01.
Bien-Cuong,D.,Thi-Thu,D.,Berrin,J.G.,Haltrich,D.,Kim-Anh,T.,Sigoillot,J.C.&Yamabhai,M.(2009).MicrobialCellFactories,8(1),59.
LinktoArticle
ReadAbstract
Background:Mannansarekeycomponentsoflignocellulosepresentinthehemicellulosicfractionofplantprimarycellwalls.Mannanendo-1,4-β-mannosidases(1,4-β-D-mannanases)catalyzetherandomhydrolysisofβ-1,4-mannosidiclinkagesinthemainchainofβ-mannans.Biodegradationofβ-mannansbytheactionofthermostablemannanendo-1,4-β-mannosidaseofferssignificanttechnicaladvantagesinbiotechnologicalindustrialapplications,i.e.delignificationofkraftpulpsorthepretreatmentoflignocellulosicbiomassrichinmannanfortheproductionofsecondgenerationbiofuels,aswellasforapplicationsinoilandgaswellstimulation,extractionofvegetableoilsandcoffeebeans,andtheproductionofvalue-addedproductssuchasprebioticmannooligosaccharides(MOS).Results:Ageneencodingmannanendo-1,4-β-mannosidaseor1,4-β-D-mannanmannanohydrolase(E.C.3.2.1.78),commonlytermedβ-mannanase,fromAspergillusnigerBK01,whichbelongstoglycosylhydrolasefamily5(GH5),wasclonedandsuccessfullyexpressedheterologously(upto243μgofactiverecombinantproteinpermL)inPichiapastoris.TheenzymewassecretedbyP.pastorisandcouldbecollectedfromtheculturesupernatant.ThepurifiedenzymeappearedglycosylatedasasinglebandonSDS-PAGEwithamolecularmassofapproximately53kDa.Therecombinantβ-mannanaseishighlythermostablewithahalf-lifetimeofapproximately56hat70°CandpH4.0.Theoptimaltemperature(10-minassay)andpHvalueforactivityare80°CandpH4.5,respectively.Theenzymeisnotonlyactivetowardsstructurallydifferentmannansbutalsoexhibitslowactivitytowardsbirchwoodxylan.ApparentKmvaluesoftheenzymeforkonjacglucomannan(lowviscosity),locustbeangumgalactomannan,carobgalactomannan(lowviscosity),and1,4-β-D-mannan(fromcarob)are0.6mgmL-1,2.0mgmL-1,2.2mgmL-1and1.5mgmL-1,respectively,whiletheKcatvaluesforthesesubstratesare215s-1,330s-1,292s-1and148s-1,respectively.JudgedfromthespecificityconstantsKcat/Km,glucomannanisthepreferredsubstrateoftheA.nigerβ-mannanase.Analysisbythinlayerchromatographyshowedthatthemainproductfromenzymatichydrolysisoflocustbeangumismannobiose,withonlylowamountsofmannotrioseandhighermanno-oligosaccharidesformed.Conclusion:Thisstudyisthefirstreportonthecloningandexpressionofathermostablemannanendo-1,4-β-mannosidasefromA.nigerinPichiapastoris.Theefficientexpressionandeaseofpurificationwillsignificantlydecreasetheproductioncostsofthisenzyme.TakingadvantageofitsacidicpHoptimumandhighthermostability,thisrecombinantβ-mannanasewillbevaluableinvariousbiotechnologicalapplications.
Promiscuityinligand-binding:thethree-dimensionalstructureofaPiromycescarbohydrate-bindingmodule,CBM29-2,incomplexwithcello-andmannohexaose.
Charnock,S.J.,Bolam,D.N.,Nurizzo,D.,Szabó,L.,McKie,V.A.,Gilbert,H.J.&Davies,G.J.(2002).ProceedingsoftheNationalAcademyofSciences,99(22),14077-14082.
LinktoArticle
ReadAbstract
Carbohydrate–proteinrecognitioniscentraltomanybiologicalprocesses.Enzymesthatactonpolysaccharidesubstratesfrequentlycontainnoncatalyticdomains,“carbohydrate-bindingmodules”(CBMs),thattargettheenzymetotheappropriatesubstrate.CBMsthatrecognizespecificplantstructuralpolysaccharidesareoftenabletoaccommodateboththevariablebackboneandtheside-chaindecorationsofheterogeneousligands.“CBM29”modules,derivedfromanoncatalyticcomponentofthePiromycesequicellulase/hemicellulasecomplex,provideanexampleofthisselectiveyetflexiblerecognition.Theydiscriminatestronglyagainstsomepolysaccharideswhileremainingrelativelypromiscuoustowardbothβ-1,4-linkedmanno-andcello-oligosaccharides.Thisfeaturemayreflectpreferential,butflexible,targetingtowardglucomannansintheplantcellwall.Thethree-dimensionalstructureofCBM29-2anditscomplexeswithcello-andmannohexaoserevealaβ-jelly-rolltopology,withanextendedbindinggrooveontheconcavesurface.Theorientationofthearomaticresiduescomplementstheconformationofthetargetsugarpolymerwhileaccommodationofbothmanno-andgluco-configuredoligo-andpolysaccharidesisconferredbyvirtueoftheplasticityofthedirectinteractionsfromtheiraxialandequatorial2-hydroxyls,respectively.Suchflexibleligandrecognitiontargetstheanaerobicfungalcomplextoarangeofdifferentcomponentsintheplantcellwallandthusplaysapivotalroleinthehighlyefficientdegradationofthiscompositestructurebythemicrobialeukaryote.
Family42carbohydrate-bindingmodulesdisplaymultiplearabinoxylan-bindinginterfacespresentingdifferentligandaffinities.
Ribeiro,T.,Santos-Silva,T.,Alves,V.D.,Dias,F.M.V.,Luís,A.S.,Prates,J.A.M.,Ferraira,L.M.A.,Romao,M.J.&Fontes,C.M.G.A.(2010).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1804(10),2054-2062.
LinktoArticle
ReadAbstract
Enzymesthatdegradeplantcellwallpolysaccharidesdisplayamodulararchitecturecomprisingacatalyticdomainboundtooneormorenon-catalyticcarbohydrate-bindingmodules(CBMs).CBMsdisplayconsiderablevariationinprimarystructureandaregroupedinto59sequence-basedfamiliesorganizedintheCarbohydrate-ActiveenZYme(CAZy)database.HerewereportthecrystalstructureofCtCBM42Atogetherwiththebiochemicalcharacterizationoftwoothermembersoffamily42CBMsfromClostridiumthermocellum.CtCBM42A,CtCBM42BandCtCBM42Cbindspecificallytothearabinoseside-chainsofarabinoxylansandarabinan,suggestingthatvariouscellulosomalcomponentsaretargetedtotheseregionsoftheplantcellwall.ThestructureofCtCBM42Adisplaysabeta-trefoilfold,whichcomprises3sub-domainsdesignatedasα,βandγ.Eachoneofthethreesub-domainspresentsaputativecarbohydrate-bindingpocketwhereanaspartateresiduelocatedinacentralpositiondominatesligandrecognition.Intriguingly,theγsub-domainofCtCBM42Aispivotalforarabinoxylanbinding,whiletheconcertedactionofβandγsub-domainsofCtCBM42BandCtCBM42Cisapparentlyrequiredforligandsequestration.Thus,thisworkrevealsthatthebindingmechanismofCBM42membersisincontrastwiththatofhomologousCBM13swhererecognitionofcomplexpolysaccharidesresultsfromthecooperativeactionofthreeproteinsub-domainspresentingsimilaraffinities.
Functionalgenomicanalysissupportsconservationoffunctionamongcellulosesynthase-likeAgenefamilymembersandsuggestsdiverserolesofmannansinplants.
Liepman,A.H.,Nairn,C.J.,Willats,W.G.T.,Sørensen,I.,Roberts,A.W.&Keegstra,K.(2007).PlantPhysiology,143(4),1881-1893.
LinktoArticle
ReadAbstract
Mannanpolysaccharidesarewidespreadamongplants,wheretheyserveasstructuralelementsincellwalls,ascarbohydratereserves,andpotentiallyperformotherimportantfunctions.Previousworkhasdemonstratedthatmembersofthecellulosesynthase-likeA(CslA)familyofglycosyltransferasesfromArabidopsis(Arabidopsisthaliana),guar(Cyamopsistetragonolobus),andPopulustrichocarpacatalyseβ-1,4-mannanandglucomannansynthasereactionsinvitro.MannanpolysaccharidesandhomologsofCslAgenesappeartobepresentinalllineagesoflandplantsanalyzedtodate.Inmanyplants,theCslAgenesaremembersofextendedmultigenefamilies;however,itisnotknownwhetherallCslAproteinsareglucomannansynthases.CslAproteinsfromdiverselandplantspecies,includingrepresentativesofthemono-anddicotyledonousangiosperms,gymnosperms,andbryophytes,wereproducedininsectcells,andeachCslAproteincatalyzedmannanandglucomannansynthasereactionsinvitro.Microarrayminingandquantitativereal-timereversetranscription-polymerasechainreactionanalysisdemonstratedthattranscriptsofArabidopsisandloblollypine(Pinustaeda)CslAgenesdisplaytissue-specificexpressionpatternsinvegetativeandfloraltissues.GlycanmicroarrayanalysisofArabidopsisindicatedthatmannansarepresentthroughouttheplantandareespeciallyabundantinflowers,siliques,andstems.MannansarealsopresentinchloronemalandcaulonemalfilamentsofPhyscomitrellapatens,wheretheyareprevalentatcelljunctionsandinbuds.Takentogether,theseresultsdemonstratethatmembersoftheCslAgenefamilyfromdiverseplantspeciesencodeglucomannansynthasesandsupportthehypothesisthatmannansfunctioninmetabolicnetworksdevotedtoothercellularprocessesinadditiontocellwallstructureandcarbohydratestorage.
PurificationandCharacterizationofaThermostableβ-mannanasefromBacillussubtilisBE-91:PotentialApplicationinInflammatoryDiseases.
Cheng,L.,Duan,S.,Feng,X.,Zheng,K.,Yang,Q.&Liu,Z.(2016).BioMedResearchInternational,ArticleID6380147.
LinktoArticle
ReadAbstract
β-mannanasehasshowncompellingbiologicalfunctionsbecauseofitsregulatoryrolesinmetabolism,inflammation,andoxidation.Thisstudyseparatedandpurifiedtheβ-mannanasefromBacillussubtilisBE-91,whichisapowerfulhemicellulose-degradingbacteriumusinga“two-step”methodcomprisingultrafiltrationandgelchromatography.Thepurifiedβ-mannanase(about28.2 kDa)showedhighspecificactivity(79,859.2 IU/mg).TheoptimumtemperatureandpHwere65°Cand6.0,respectively.Moreover,theenzymewashighlystableattemperaturesupto70°CandpH4.5-7.0.Theβ-mannanaseactivitywassignificantlyenhancedinthepresenceofMn+,Cu2+,Zn2+,Ca2+,Mg2+,andAl3+andstronglyinhibitedbyBa2+,andPb2+.KmandVmaxvaluesforlocustbeangumwere7.14 mg/mLand107.5 μmol/min/mLversus1.749 mg/mLand33.45 µmol/min/mLforKonjacglucomannan,respectively.Therefore,β-mannanasepurifiedbythisworkshowsstabilityathightemperaturesandinweaklyacidicorneutralenvironments.Basedonsuchdata,theβ-mannanasewillhavepotentialapplicationsasadietarysupplementintreatmentofinflammatoryprocesses.
DoescelluloseIIexistinnativealgacellwalls?CellulosestructureofDerbesiacellwallsstudiedwithSFG,IRandXRD.
Park,Y.B.,Kafle,K.,Lee,C.M.,Cosgrove,D.J.,&Kim,S.H.(2015).Cellulose,22(6),3531-3540.
LinktoArticle
ReadAbstract
Innature,algaeproducecelluloseIwhereallglucanchainsarealignedparallel.However,thepresenceofcelluloseIIwithanti-parallelglucanchainshasbeenreportedforcertainDerbesia(Chlorophyceaealgae)cellwalls;ifthisistrue,itwouldmeananewbiologicalprocessforsynthesizingcellulosethathasnotyetbeenrecognized.Toanswerthisquestion,weexaminedcellulosestructureinDerbesiacellwalls,intactaswellastreatedwithcelluloseisolationprocedures,usingsum-frequency-generationspectroscopy,infrared(IR)spectroscopyandX-raydiffraction(XRD).Derbesiawallscontainlargeamountsofmannanandsmallamountsofcrystallinecellulose.EvidenceforcelluloseIIintheintactcellwallswasnotfound,whereascelluloseIIinthetrifluoroaceticacid(TFA)treatedcellwallsamplesweredetectedbyIRandXRD.Acontrolexperimentconductedwithball-milledAvicelcellulosesamplesshowedthatcelluloseIIstructurecouldbeformedasaresultofTFAtreatmentanddryingofamorphouscellulose.ThesedatasuggestthatthecelluloseIIstructuredetectedintheTFA-treatedDerbesiagametophytewallsamplesismostlikelyduetoreorganizationofamorphouscelluloseduringthesamplepreparation.OurresultscontradictthepreviousreportofcelluloseIIinnativealgacellwalls.EvenifthecrystallinecelluloseIIexistsinintactDerbesiagametophytecellwalls,itsamountwouldbeverysmall(belowthedetectionlimit)andthusbiologicallyinsignificant.
蚂蚁淘电商平台
ebiomall.com
ebiomall.com

公司简介

蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台,
该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁
淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、
运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯
蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。

及时交付: 限时必达 畅选无忧
蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。

轻松采购: 在线下单 简单省事
蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。

售后申请: 耐心讲解 优质服务
蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。

2019-02-15
肌动蛋白聚合分析生化试剂盒基于在聚合过程中pyrene(芘)结合Actin时荧光增强的原理,是一种非常快速和经济的研究肌动蛋白聚合/解聚的方案。 查看更多
>
2018-08-08
凝胶剂(《中国药典》2010年版二部附录I U)系指药物与能形成凝胶的辅料制成溶液、混 悬或乳状液型的稠厚液体或半固体制剂。除另有规定外,凝胶剂限局部用于皮肤及体腔。凝胶剂应均匀、细腻,在常温时保持胶状,不干涸或液化;除品种项下规定的检验项目外, 还应检查“装量”、“无菌”或“微生物限度”;混悬型凝胶剂还应检查“粒度”。 查看更多
>
2021-08-27
我们长期与Thermo Bio-rad Axygen qiagen Corning BD Promega Biotium BV targetmol merckmillipore Sigma AAT-Biolite biorbyt ENZO GE Greiner Immonoway Jackson le... 查看更多
>
2019-02-13
广州鸿泉生物科技有限公司在发布的EDTA抗凝牛血鸿泉生物生化试剂厂家直销供应信息,浏览与EDTA抗凝牛血鸿泉生物生化试剂厂家直销相关的产品或在搜索更多与EDTA抗凝牛血鸿泉生物生化试剂厂家直销相关的内容。 查看更多
>
2019-05-20
美国NovaTeinBio品牌产品列表【代理商整理】 查看更多
>
2021-09-08
amresco生化试剂【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco生化试剂【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年amresco生化试剂【1218】CodeItem Descri 查看更多
>
我们在致力于生物化学试剂产品研发的同时,还与著名的荧光试剂产品供应商美国Biotium公司和Allelogic公司建立了长期的合作关系,并成为Biotium公司中国区总代理商。我们的... 查看更多
>
2021-07-22
... 查看更多
>
2021-06-03
标签: 试剂 达泰本公司即将参加2008中国国际分析仪器、生化试剂及实验室设备展,欢迎新老用户届时光临参观指导。时间:2008年11月25日-27日 地点:北京·中国国际展览中心我们的展位号为:206... 查看更多
>
2018-08-10
元基因组学(metagenomics) 可提供无倾向性的微生物环境样品的总的遗传结构和功能组成信息,而不需要对群落中的微生物进行培养。元基因组学目前充分利用了当前已知的多种全基因序列(1, 2 ) 及相关方法,如细菌人工染色体和 fosmid 载体,以发现新基因和研究微生物群落的结构和功能。在比较基因组研究中,一些互补的且费用更低廉的方法可用来比较不同微生物的基因组。抑制性消减杂交技术(suppressive subtractive hybridization, S S H ) 就是这样的方法,可用于比较 查看更多
>
2018-08-08
低密度接种细胞,培养至集落形成,细胞染色(用于克隆形成率和存活检测 ) 或用于筛选时分离细胞、然后扩增为细胞株。 查看更多
>
2019-09-28
青岛捷世康生物科技有限公司在发布的改良Harris苏木素染色液&gt;生化试剂供应信息,浏览与改良Harris苏木素染色液&gt;生化试剂相关的产品或在搜索更多与改良Harris苏木素染色液&gt;生化试剂相关的内容。 查看更多
>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑;
Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员,
或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
CNASCL36:2012《医学实验室质量和能力认可准则在基因扩增检验领域的...123
答案依旧2021-07-22
相关疾病:癫痫请各位老师分享一下,对于红框中的验证要求,你们实验室是怎么验证的呢?对于试剂的批间差异验证,我们是通过留样再测来比对的,想问一下,可不可以使用核酸提取液提取后的DNA冰冻保存好,然后需要比对的时候再拿......
下列各组溶液中,不用任何其他试剂就能鉴别的是123
woshitiancai692018-01-24
1.KOH,Na2SO4,AlCL3
2.NaHCO3,Ba(OH)3,H2SO4
3.HCL,NaAlO2,NaHSO4
4.Ca(OH)2,Na2CO3,BaCO3
谢谢了
要原因
2.NaHCO3,Ba(OH)3,H2SO4
3.HCL,NaAlO2,NaHSO4
4.Ca(OH)2,Na2CO3,BaCO3
谢谢了
要原因
不用外加其他试剂,即可把下列四种溶液依次鉴别开:NaOH溶液、CuSO4...123
2018-03-19
NaOH溶液、CuSO4溶液、Na2SO4溶液、MgSO4溶液
只用胶头滴管和试管,不用其他试剂就可以区别的下列溶液(浓度均...123
小柒神95042018-01-24
只用胶头滴管和试管,不用其他试剂就可以区别的下列溶液(浓度均为)是( )A.和B.稀和C.和D.和盐酸
体外诊断试剂质量管理体系整套文件123
国zh2021-07-30
刚入这行,谢谢大家
用1mg/mL的铁储备液配制10μg/mL的工作液,用此工作液配制一组标准...123
jinbowen3252018-01-29
例:1。硝酸钡2。硝酸银3。氯化钠4。氯化铜四种溶液检验出的顺序。
通过解答,教会我,谢谢
通过解答,教会我,谢谢
使用罗氏的TUNEL试剂盒,POD是啥意思?干啥用的?谢谢! 生理生化...123
如意阳光光2021-08-04
如题!!
(1/2)除去()内的杂质用什么试剂和装置C02(HCl)、C02(SO2)、Cl2(...123
心飞机杯2021-07-25
不用其他试剂,除去hcl
下列各组溶液,不加其他试剂就能鉴别的是 初中化学 菁优网123
陌幻念2018-01-30
A,Na2CO3H2SO4HCLNaNO3B,NaOHNaCLMgCL2FeCL3C,HCLAgNO3HNO3MgCL2
D,K2SO4Na2CO3BaCL2NaNO3
D,K2SO4Na2CO3BaCL2NaNO3
肺结核杆菌h37ra_肺结核杆菌h37ra【价格,厂家,图片,批发,采购】123
在途2021-07-31
请问下有无同学需要H37RA的?我是做EAE模型的,上个月购买了BDDifco公司的H37RA(货号),因为购买的时候只能整盒6支购买,但我们用不了那么多,所以想问问有无同学需要的,100mg/支,800元/支或用等价试剂交换。地址广州。有需要的请私信,谢谢!
化学试剂有什么级别以及试剂级别划分的标准是什么 123
fochezhing8672018-03-16
化学试剂的纯度较高,根据纯度及杂质含量的多少,可将其分为以下几个等级。
(1)优级纯试剂 亦称保证试剂,为一级品,纯度高,杂质极少,主要用于精密分析和科学研究,常以GR表示。
(2)分析纯试剂 亦称分析试剂,为二级品,纯度略低于优级纯,杂质含量略高于优级纯,适用于重要分析和一般性研究工作,常以AR表示。
(3)化学纯试剂 为三级品,纯度较分析纯差,但高于实验试剂,适用于工厂、学校一般性的分析工作,常以CP表示。
(4)实验试剂 为四级品,纯度比化学纯差,但比工业品纯度高,主要用于一般化学实验,不能用于分析工作,常以 LR表示。
以上按试剂纯度的分类法已在我国通用。根据化学工业部颁布的“化学试剂包装及标志”的规定,化学试剂的不同等级分别用各种不同的颜色来标志,见表1。
表1 我国化学试剂的等级及标志
(1)优级纯试剂 亦称保证试剂,为一级品,纯度高,杂质极少,主要用于精密分析和科学研究,常以GR表示。
(2)分析纯试剂 亦称分析试剂,为二级品,纯度略低于优级纯,杂质含量略高于优级纯,适用于重要分析和一般性研究工作,常以AR表示。
(3)化学纯试剂 为三级品,纯度较分析纯差,但高于实验试剂,适用于工厂、学校一般性的分析工作,常以CP表示。
(4)实验试剂 为四级品,纯度比化学纯差,但比工业品纯度高,主要用于一般化学实验,不能用于分析工作,常以 LR表示。
以上按试剂纯度的分类法已在我国通用。根据化学工业部颁布的“化学试剂包装及标志”的规定,化学试剂的不同等级分别用各种不同的颜色来标志,见表1。
表1 我国化学试剂的等级及标志
不用任何试剂进行物质鉴别的突破口 123
杰少~2018-01-25
1.NaHCO3NaHSO4Ba(NO3)2
2.NaNO3FeCl3AgNO3
分别有什么现象?谢谢回答!
2.NaNO3FeCl3AgNO3
分别有什么现象?谢谢回答!
▍
品牌问答