
Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), one of the family members of poly(triaryl)amine, is an excellent hole-transporting and electron-blocking semiconducting material due to its electron-rich components. It has been reported that the use of PTAA can substantially improve the open-circuit voltage (VOC) and fill factor (FF) of the cells. Perovskite solar cells based on the use of the hole-transporting materials exhibit a short-circuit current density JSC of 16.5 mA/cm2, VOC of 0.997 V and FF of 0.727.[1]
With PTAA as the hole-transport layer (HTL), best results have shown that the incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3, improving the power conversion efficiency of the solar cell to more than 18% under a standard illumination of 100 milliwatts/cm2 [2]. This makes PTAA the best polymer HTL yet for perovskites. Later on, 20.2% was achieved in 2015 with PTAA as the HTL [3].
General Information
CAS number | 1333317-99-9 |
Chemical formula | (C21H19N)n |
Molecular weight | Please see batch details |
HOMO / LUMO | HOMO 5.25 eV LUMO 2.30 eV [6] |
Recommended solvents | Chlorobenzene, chloroform, dichlorobenzene and toluene |
Synonyms | Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)aminePoly(triarylamine) |
Classification / Family | Polyamines, Hole-transport layer materials, Electron-blocking layer materials, Organic semiconducting materials, Organic photovoltaics, Polymer solar cells, OLED materials |
Chemical Structure

Device Structure(s)
Device structure | FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/PTAA/Au [1] | FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Au [1] |
JSC (mA cm-2) | 16.4 | 6.8 |
VOC (V) | 0.9 | 0.68 |
FF (%) | 61.4 | 53.8 |
PCE | 9.0 | 2.5 |
Device structure | FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [2] |
JSC (mA cm-2) | 22.5 |
VOC (V) | 1.11 |
FF (%) | 73.2 |
PCE | 18.4 |
Device structure | FTO/bl-TiO2/mp-TiO2/FAPbI3 (DMSO)/PTAA/Au [3] |
JSC (mA cm-2) | 24.7 |
VOC (V) | 1.06 |
FF (%) | 77.5 |
PCE | 20.2 |
MSDS Documentation
PTAA (Perovskite) MSDS sheet
Pricing
Batch | Quantity | Price |
M515 | 100 mg | £192.00 |
M515 | 250 mg | £383.00 |
M515 | 500 mg | £634.00 |
M515 | 1 g | £987.00 |
M515 | 2 g | £1730.00 |
Batch details
Batch | Mw | Mn | PDI | Stock info |
M512 | 27,371 | 13,514 | 2.02 | Discontinued |
M513 | 28,422 | 17,437 | 1.63 | Discontinued |
M514 | 14,000 | 9,150 | 1.53 | Discontinued |
M515 | 33,000 | 12,220 | 2.7 | In Stock |
Literature and Reviews
- Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, J. Heo et al., Nat. Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
- Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.
- High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, W-S. Yang et al., Science, 348 (6240), 1234-1237 (2015). DOI: 10.1126/science.aaa9272.
- High-efficient solid-state perovskite solar cells without lithium salt in the hole transport material, NANO 09, 1440001 (2014). DOI: 10.1142/S1793292014400013.
- Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, J. Noh et al., Nano Lett., 13, 1764−1769 (2013), dx.doi.org/10.1021/nl400349b.
- Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays, A. Intaniwet et al., ACS Appl Mater Interfaces. 2(6), 1692-9 (2010). doi: 10.1021/am100220y.
- Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells, A. Lefrançois et al., Sci Rep. 2015; 5: 7768. doi: 10.1038/srep07768.
- Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability, Y. Wang et al., Adv. Funct. Mater., 26, 1375–1381 (2016); DOI: 10.1002/adfm.201504245.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
现在不少文献和讲座都提到使用化学成份限定的supplement代替蛋白水解物,大家有什么经验可以分享或者交流的吗?
1、血清:大部分人提及的Hyclone和Gibco,现在很多人对其血清的来源及目前市面上流行的真假好坏有怀疑,有人买到说好,有人说像是假的;也有人用国产的胎牛血清培养的,多提及兰州民海和四季青的,并且对兰州民海似乎支持者较多。对血清的选择还想说,不同厂家不同批次的血清都不同保证成分完全一致,对于使用者而言,可以从外观、培养方面了解血清的质量。
2、内皮生长因子:养内皮细胞都需加入生长因子,ECGS和ECGF用的较多,含量ECGS0.03-0.05mg/ml或ECGF50μg/ml,品牌提的最多的是Sigma的,但是Sigma的真心贵啊,另有些人提的最多的是罗氏,较便宜,75mg才2200RMB左右,性价比应该是比较高的,本人准备入手。
3、肝素:肝素在内皮细胞培养中的作用是抑制其他杂细胞的生长,尤其是平滑肌细胞的生长,使内皮细胞成为生长优势群,浓度不定,有几种说法:查阅书,15μg/ml;美国ATCC说明书,0.1mg/ml;另有50U/ml,肝素买的话大部分人也都推荐Sigma。
2014年10月21日08:55:05来源:中国青年报
“在我国,90%左右的人认为食品安全问题是食品添加剂所造成的,但很多人把非法添加物误认为是食品添加剂。”在近日召开的中国食品安全年会上,中国工程院院士孙宝国解释了食品添加剂与非法添加物的不同。
他指出,食品添加剂的使用有着6点需要,首先是为了改善食品品质。以婴幼儿配方奶粉为例,许多婴幼儿奶粉中正是因为添加了符合标准的食品添加剂,才能最大程度地接近母乳成分。
其次,使用食品添加剂是食品防腐的客观需要。“很多消费者对防腐剂表示反感,但如果食品中没有防腐剂,那么有害的微生物就会迅速繁殖,而有害微生物污染恰恰是造成食品安全问题的第一大杀手。”孙宝国强调。
除此之外,他还指出,食品添加剂可以起到让食品保鲜、改善食品色香味、满足食品加工工艺等需求。“可乐里面一定含有咖啡因,因为没有咖啡因成分的话,就不可能称之为可乐。”孙宝国表示,从毒理学角度看,不少食品添加剂的确有毒,如卤水,但食品添加剂本身有毒与添加了食品添加剂的食品有毒绝对是两回事,主要区别在于食品添加剂的使用量。
“食品添加剂只要合法使用都是安全的,不会对人体健康造成危害,因此,一定要监管好食品添加剂的使用,违法使用,超量、超范围使用都有可能带来风险”。孙宝国说。
国家食品安全风险评估中心首席科学家吴永宁也指出,当前食品安全控制的应该是风险,而不是危害。“我们要规范好什么样的食品添加剂能用,以及使用剂量和使用范围。如果在规范之外,就是非法添加。三聚氰胺、苏丹红这些都是非法添加物,我们不能把非法添加物与食品添加剂进行混淆。”
相容性药品包装材料与药物相容性试验指导原则2.pdf(43.35k)

