![Biosettia/pLV-[hsa-mir-106a_18b_20b_19b-2_92a-2] plasmid/mir-pc03/1 Ea](images/201711/1511921223533843323.jpg)
pLV-[hsa-mir-106a_18b_20b_19b-2_92a-2]plasmid
HumanmicroRNA(hsa-mir)precursorsandapproximately100-bpupstreamanddownstreamflankinggenomicsequenceswerePCRamplifiedandclonedintoaself-inactivated(SIN)lentiviralvectortogeneratepLV-miRNAvectors.Thecloningsiteofpre-miRNAgenomicfragmentsiswithintheintronofhumanEF1apromoterregion.ThemiRNAofinterestcanbedeliveredintocellsbytransienttransfectionofthepLV-miRNAplasmidorlentiviraltransductionwhilethemiRNAlentiviralstockispreparedfromcotransfectingHEK293TcellswiththepLV-miRNAplasmidandlentiviralpackagingvectormix.
PlasmidDescription | Advantages | DownloadGenbank | Protocols | PurchaseControl |
biosttia是一家总部位于圣地亚哥的公司,提供分子生物学产品和服务,支持全球的研究人员。利用我们高效的慢病毒系统,我们协助许多学术机构、生物技术和制药公司进行基因表达和抑制相关研究。Biosettia专门从事:shRNA载体系统的基因沉默慢病毒miRNA对基因的抑制作用慢病毒miRNA的功能筛选miRLocker–慢病毒miRNA抑制慢病毒的制备慢病毒基因表达诱导多能干细胞生成核酸纯化
RNA干扰(RNAi)是有效沉默或抑制目标基因表达的过程,该过程通过双链RNA(dsRNA)使得目标基因相应的mRNA选择性失活来实现的。RNA干扰由转运到细胞细胞质中的双链RNA激活。沉默机制可导致由小干扰RNA(siRNA)或短发夹RNA(shRNA)诱导实现靶mRNA的降解,或者通过小RNA(miRNA)诱导特定mRNA翻译的抑制。这篇综述将重点介绍shRNA和siRNA是如何导致蛋白质表达抑制的。通过几种蛋白的活性(下面讨论),通过短反义核酸(siRNA和shRNA序列)锁定细胞mRNA,从而实现其随后的降解。这反过来阻断了该蛋白的进一步表达/聚集,导致其水平的下降,最终实现抑制作用。[放大]图1. siRNA和shRNA结构。(A)siRNAs是短的RNA双链,在3‘端有两个碱基的游离。(B)shRNA由正义链和反义链通过环状序列隔开共同组成。(C)shRNA构建用于插入表达载体。源自[1, 2]。背景调控途径的发现和组成元件早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。
表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。术语描述siRNA小干扰(siRNA),有在3’端有两个碱基的游离,可激活RNA干扰,通过与目标mRNA互补结合序列特异性地实现mRNA降解。shRNA短发夹RNA(shRNA),包含一个环结构,可加工成siRNA,也可通过与目标mRNA互补结合序列特异性地实现靶mRNA降解.Drosha是一种核糖核酸酶III的酶,可加工细胞核中的前体-miRNA和shRNA。Dicer核糖核酸酶III酶,能够将双链RNA加工成在3‘端有两个碱基游离的20-25bp的siRNA。果蝇的Dicer-2能够剪切长的双链RNA,而Dicer-1对miRNA的加工有重要作用RISC最小RNA诱导沉默复合物(RISC)包含Argonaute蛋白和相关的siRNA。也可能包含PACT、TRBP和Dicer。需要注意的是RISC的组成尚未能得到确切的描述。TRBPDicer剪切双链RNA以及随后转运给RISC的过程中需要PACT蛋白R(PKR)-激活蛋白(PACT)。Dicer和TRBP参与双链RNA剪切相关.Argonautefamilyofproteins和单链的RNA(siRNA)共同组装形成RISC。绑定21-35个核苷酸的RNA,包括miRNA和siRNA以及相关的靶mRNA,然后通过其内切核酸酶功能发挥剪切作用。剪切作用发生在反义链(引导链)RNA的第10th和第11th个核苷酸之间。表一:RNAi机制的主要组成元件。siRNA vs. shRNA作用机制两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA(图1)都可用于蛋白沉默,但它们的作用机制有所不同(图2)。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中(参见转运机制获取更多细节)。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2(Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。[放大]图2. RNAi介导的基因沉默机制。在细胞核表达后,shRNA被Drosha加工然后由Exportin-5蛋白转运到细胞质中,在细胞质中它们与Dicer结合去除环状序列。在这一点上,它们与siRNA的加工方式(以短的双链形态导入细胞,然后被Dicer识别)相同。在与RISC结合并去掉其中一条RNA链后,它们识别mRNA占有互补序列,导致其降解。源自[3]。shRNA在转染/转导细胞的细胞核中的合成,形成发夹结构,茎区成对的反义和正义链与未配对的成环核苷酸连接在一起(图1b和1c)。通过与miRNA的加工相同的RNAi机制,shRNA被加工成siRNA。使用细菌或病毒载体,shRNA被导入靶细胞的细胞核内,在某些情况下,载体可以稳定地整合到基因组中。根据驱动表达的启动子的不同,shRNA可被RNA聚合酶II或者III催化转录。在被Exportin-5转运到细胞质之前,这些初始的前体结构需要首先用Drosha及其双链RNA结合伴侣DGCR8加工形成pre-shRNA。pre-shRNA随后被Dicer和TRBP/PACT酶切,去除发卡结构,产生在两个3‘末端带有两个游离碱基的20-25nt的双链siRNA。这一有活性的siRNA随后被整合到沉默复合物上去。一旦被整合到RISC后,shRNA和siRNA识别靶mRNA和降解的过程基本上是相同的。作为RISC的一部分,siRNA通过碱基互补配对以序列特异性的方式结合到靶mRNA,从而利用Ago-2的核酸酶H样活性裂解靶RNA的双链中心附近的磷酸骨架。某些生物的这个系统有一个有趣的特点,siRNA与靶mRNA的退火使siRNA作为引物,而靶mRNA作为依赖于RNA的RNA聚合酶的模板。这就合成出一个新的双链RNA,然后由Dicer酶加工,形成正反馈循环,增加了siRNA的量。应当指出的siRNA通常需要完全同源才能诱导降解。该过程图2中有阐述。人们对RISC发现靶mRNA的过程还没有很好的理解。然而,Ameres等的报告显示细胞mRNA的靶序列的亲近性影响了它的剪切。他们还指出,RISC不是作用于未折叠的RNA。他们提出了一个模型,在该模型中,RISC非特异性的方式通过随机扩散与单链RNA接触,5"末端碱基配对比3"末端更有效率。这似乎决定了RISC与靶mRNA的稳定结合。
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
请教一下,一般做启动子报告基因检测,载体用pGL3,pGL4双荧光报告基因质粒,但pGL3,pGL4都只能做瞬时转染,我的细胞(不想用293做实验)质粒转染后都会死很多,还要加上一些处理因素(比如药物,饥饿等),细胞状态更不好了。所以想找一个慢病毒骨架的报告基因质粒。
上网查了下,SBI的pGreenFire1和Genecopia的Gluc-ON是慢病毒质粒。
1.pGreenFire1可以检测Luc和GFP,但用什么做内参呢?查了下文章,有的文章检测Luc的时候同时检测一个MTS读数做内参;另外有一篇文章用qPCR的方法检测了GFP和GAPDH,用GAPDH做内参。不确定这样是不是正确呢?
2.Gluc-ON检测的是分泌型的Gluc,载体上还有分泌型的碱性磷酸酶做内参。
不知有没有哪位以前用过这两个质粒的?文章用这两个质粒的都不多,不知投稿的时候会不会被质疑?
2、人体病灶细胞或者分泌型细胞有载体病毒受体;
3、DNA病毒,且酶切改造后具有复制能力;
4、表达产物对载体病毒没有抑制作用。
不知道是否准确,希望对你有帮助。
2、基因表达载体的构建
(1)目的:使目的基因在受体细胞中稳定存在并且可以遗传给下一代并表达和发挥作用.(2)基因表达载体的组成:目的基因+启动子+终止子+标记基因
②启动子在基因的首段,它是RNA聚合酶的结合位点,能控制着转录的开始,故②正确;
③终止子在基因的尾端,它控制着转录的结束,故③正确;
④由于受体细胞有植物、动物以及微生物之分,以及目的基因导入受体细胞的方法不同,因此基因表达载体的构建是不完全相同的,
常用细菌质粒进行构建,构建过程中运用限制性核酸内切酶切割出与目的基因相合的末端(多为黏性末端,也有平末端),采用DNA连接酶连接,导入生物体实现表达。标记基因可帮助识别质粒并检测是否成功整合到染色体DNA中。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),使目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
Adeasy系统:通过原核重组极大提高了腺病毒的重组效率。其具体的构建步骤如下图。
AdMax系统:Cre/LoxP体系改造后的真核腺病毒包装体系,进一步增加的操作的便捷,同时滴度较Adeasy有进一步提高。步骤如图所示。
下面是一些经典的AdMax系统质粒图谱:
完整的表达载体必须包括:
1、复制子,在细菌中扩增时所必须.
2、启动子,目的基因在细菌或细胞中转录所必须,转录了才能翻译,是谓“表达”.
3、原核筛选标记,细菌增菌所必须.
4、真核筛选标记,如果是真核表达,就是必须的.
5、多克隆位点,即酶切位点,插入目的片段的区域.
6、其他所需构件,可视实验设计情况而选用现成载体或在载体上自行添加.
另:表达的起始和终止,在目的基因上附带起始密码子和终止密码子.
在把目的基因两翼的序列克隆到载体上的时候,两端序列的方向是必须与染色体的方向一致吗?如果一正一反,或者是两者都反向可以敲除吗?谢谢!
常用细菌质粒进行构建,构建过程中运用限制性核酸内切酶切割出与目的基因相合的末端(多为黏性末端,也有平末端),采用DNA连接酶连接,导入生物体实现表达。标记基因可帮助识别质粒并检测是否成功整合到染色体DNA中。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),使目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

