| Product Details and Specifications | ||
| Product Name | pLV-EF1a-MCS-IRES-RFP-Puro | ![]() |
| Product Catalog Number | cDNA-pLV09 | |
| Components | Each kit contains 40 ul plasmid DNA (250 ng/ul), 20 ul EF1a forward primer (10 uM), and 20 ul IRES reverse primer (10 uM) | |
| Selectable Marker | RFP-Puro | |
| Storage Conditions | Store your lentiviral gene expression vector and its sequencing primers at -20 degrees Celsius | |
| Shipping Conditions | Our cDNA vectors are shipped at room temperature via overnight delivery. Please note that additional shipping charges may apply. | |
| Download Map | Download Genbank | |
| Download Protocol | Download PDF | |
biosttia是一家总部位于圣地亚哥的公司,提供分子生物学产品和服务,支持全球的研究人员。利用我们高效的慢病毒系统,我们协助许多学术机构、生物技术和制药公司进行基因表达和抑制相关研究。Biosettia专门从事:shRNA载体系统的基因沉默慢病毒miRNA对基因的抑制作用慢病毒miRNA的功能筛选miRLocker–慢病毒miRNA抑制慢病毒的制备慢病毒基因表达诱导多能干细胞生成核酸纯化
RNA干扰(RNAi)是有效沉默或抑制目标基因表达的过程,该过程通过双链RNA(dsRNA)使得目标基因相应的mRNA选择性失活来实现的。RNA干扰由转运到细胞细胞质中的双链RNA激活。沉默机制可导致由小干扰RNA(siRNA)或短发夹RNA(shRNA)诱导实现靶mRNA的降解,或者通过小RNA(miRNA)诱导特定mRNA翻译的抑制。这篇综述将重点介绍shRNA和siRNA是如何导致蛋白质表达抑制的。通过几种蛋白的活性(下面讨论),通过短反义核酸(siRNA和shRNA序列)锁定细胞mRNA,从而实现其随后的降解。这反过来阻断了该蛋白的进一步表达/聚集,导致其水平的下降,最终实现抑制作用。[放大]图1. siRNA和shRNA结构。(A)siRNAs是短的RNA双链,在3‘端有两个碱基的游离。(B)shRNA由正义链和反义链通过环状序列隔开共同组成。(C)shRNA构建用于插入表达载体。源自[1, 2]。背景调控途径的发现和组成元件早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。
表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。术语描述siRNA小干扰(siRNA),有在3’端有两个碱基的游离,可激活RNA干扰,通过与目标mRNA互补结合序列特异性地实现mRNA降解。shRNA短发夹RNA(shRNA),包含一个环结构,可加工成siRNA,也可通过与目标mRNA互补结合序列特异性地实现靶mRNA降解.Drosha是一种核糖核酸酶III的酶,可加工细胞核中的前体-miRNA和shRNA。Dicer核糖核酸酶III酶,能够将双链RNA加工成在3‘端有两个碱基游离的20-25bp的siRNA。果蝇的Dicer-2能够剪切长的双链RNA,而Dicer-1对miRNA的加工有重要作用RISC最小RNA诱导沉默复合物(RISC)包含Argonaute蛋白和相关的siRNA。也可能包含PACT、TRBP和Dicer。需要注意的是RISC的组成尚未能得到确切的描述。TRBPDicer剪切双链RNA以及随后转运给RISC的过程中需要PACT蛋白R(PKR)-激活蛋白(PACT)。Dicer和TRBP参与双链RNA剪切相关.Argonautefamilyofproteins和单链的RNA(siRNA)共同组装形成RISC。绑定21-35个核苷酸的RNA,包括miRNA和siRNA以及相关的靶mRNA,然后通过其内切核酸酶功能发挥剪切作用。剪切作用发生在反义链(引导链)RNA的第10th和第11th个核苷酸之间。表一:RNAi机制的主要组成元件。siRNA vs. shRNA作用机制两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA(图1)都可用于蛋白沉默,但它们的作用机制有所不同(图2)。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中(参见转运机制获取更多细节)。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2(Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。[放大]图2. RNAi介导的基因沉默机制。在细胞核表达后,shRNA被Drosha加工然后由Exportin-5蛋白转运到细胞质中,在细胞质中它们与Dicer结合去除环状序列。在这一点上,它们与siRNA的加工方式(以短的双链形态导入细胞,然后被Dicer识别)相同。在与RISC结合并去掉其中一条RNA链后,它们识别mRNA占有互补序列,导致其降解。源自[3]。shRNA在转染/转导细胞的细胞核中的合成,形成发夹结构,茎区成对的反义和正义链与未配对的成环核苷酸连接在一起(图1b和1c)。通过与miRNA的加工相同的RNAi机制,shRNA被加工成siRNA。使用细菌或病毒载体,shRNA被导入靶细胞的细胞核内,在某些情况下,载体可以稳定地整合到基因组中。根据驱动表达的启动子的不同,shRNA可被RNA聚合酶II或者III催化转录。在被Exportin-5转运到细胞质之前,这些初始的前体结构需要首先用Drosha及其双链RNA结合伴侣DGCR8加工形成pre-shRNA。pre-shRNA随后被Dicer和TRBP/PACT酶切,去除发卡结构,产生在两个3‘末端带有两个游离碱基的20-25nt的双链siRNA。这一有活性的siRNA随后被整合到沉默复合物上去。一旦被整合到RISC后,shRNA和siRNA识别靶mRNA和降解的过程基本上是相同的。作为RISC的一部分,siRNA通过碱基互补配对以序列特异性的方式结合到靶mRNA,从而利用Ago-2的核酸酶H样活性裂解靶RNA的双链中心附近的磷酸骨架。某些生物的这个系统有一个有趣的特点,siRNA与靶mRNA的退火使siRNA作为引物,而靶mRNA作为依赖于RNA的RNA聚合酶的模板。这就合成出一个新的双链RNA,然后由Dicer酶加工,形成正反馈循环,增加了siRNA的量。应当指出的siRNA通常需要完全同源才能诱导降解。该过程图2中有阐述。人们对RISC发现靶mRNA的过程还没有很好的理解。然而,Ameres等的报告显示细胞mRNA的靶序列的亲近性影响了它的剪切。他们还指出,RISC不是作用于未折叠的RNA。他们提出了一个模型,在该模型中,RISC非特异性的方式通过随机扩散与单链RNA接触,5"末端碱基配对比3"末端更有效率。这似乎决定了RISC与靶mRNA的稳定结合。
ebiomall.com
>
>
>
>
>
>
>
>
>
>
启动子是RNA聚合酶能够识别并与之结合,从而起始基因转录的一段DNA序列,通常位于基因上游.一个典型的启 动子包括CAAT-box和TATA-box,它们分别依赖DNA的RNA聚合酶的识别和结合位点,一般位于转录起始位点上游几十个碱基处.在核心启动子上 游通常会有一些特殊的DNA序列,即顺式作用元件,转录因子与之结合从而激活或抑制基因的转录.一旦RNA聚合酶定位并结合在启动子上即可 启动基因转录,因此启动子是基因表达调控的重要元件,它与RNA聚合酶及其他蛋白辅助因子等反式作用因子的相互作用是启动子调控基因转录的实质.
根据启动子的转录模式可将其分为3类:组成型启动子、组织或器官特异性启动子和诱导型启动子.
RNA干扰主体实验的重点在于: 按照nature的标准,一个严格的RNAi介导knockdown实验要有6个对照:
⒈转染试剂对照(监控转染及培养条件对结果的影响);
⒉nonsense siRNA对照(监控外源核酸本身对结果的影响);
⒊positive siRNA对照(监控假阴性);
⒋技术重复对照(也叫off-target 对照,也就是利用至少2个靶点的siRNA同时实验,2个siRNA互为off-target control,当两者的表型相同时,才有可能是特异性的knockdown效应);
⒌rescue 对照(knockdown之后做超表达,看是否有性状的逆转,这也是为了说明knockdown的特异性);6.全表达组扫描对照(就是转录/表达芯片扫描,以最终确定表型不是由于off-target造成)。
实际实验中,全表达组扫描对照很少有文献涉及。其它几个对照中,1,2两种对照即所谓的空白细胞对照、NC对照,基本是所有杂志都要求具备的。4,5两种对照,主要是为了解决off-target效应,选做一种即可,一般建议选5,涉及的实验即所谓的“RNA干扰回复实验”, 一般应该从mRNA水平、蛋白质水平、细胞表型水平三个层次来检测干扰效率。
mRNA水平:RT-PCR、Real-time PCR;蛋白质水平:Western-blot、ELISA、免疫组化;细胞表型水平:MTT、克隆形成实验、流式细胞检测、细胞小室实验等。RNA干扰效率在动物模型上的进一步验证(体内) 动物模型实验可以采取“体内法”和“体外法”。
体内法,即先做裸鼠成瘤模型,再将质粒或病毒导入裸鼠,检测RNA干扰效果。此法操作复杂,对质粒和病毒产品的质和量要求都较高,但是比较贴近实际,说服力较显著。体外法,即先将质粒或病毒导入肿瘤细胞,再将肿瘤细胞导入动物体内,然后检测RNA干扰效果。此法操作较简单,对质粒和病毒产品的质量要求较低,所以为大多数文献所采用。建议采用此方法来进行动物模型水平的实验。向左转|向右转
首先需要构建dsRNA表达载体
将这种载体导入受体细胞中后
表达产生的dsRNA在DICER酶作用下形成siRNA
引起具有相同序列的mRNA发生讲解
导致细胞或个体不能合成相应的蛋白质
所以个体会表现出功能缺失表型
构建表达载体通常选用dsRNA
需要注意的一些方面是
dsRNA序列中GC的含量要小于50%
高GC含量会降低RNAi的效果
选定的dsRNA序列应通过搜索数据库确保与其他基因无同源性
以避免对其他同源性基因表达的抑制
不同区域的dsRNA具有不同的基因沉默效果
可同时构建两个以上针对同一基因不同靶区域的dsRNA表达载体
还要充分考虑siRNA的结构特征
siRNA与mRNA的同源程度对RNAi有明显影响
启动子区或者编码区与siRNA同源的基因受siRNA抑制
但siRNA在动物细胞中对mRNA的前体没有影响
所以含非编码区序列的dsRNA不会引起RNAi
而且在构建表达载体时
经常使用U6启动子等RNA聚合酶Ⅲ能够识别的启动子序列
最后将其转入到质粒中
这里说的只是一个简单的过程
总的来说构建表达载体是个比较复杂的过程
如果要知道详细的技术
建议还是去看书吧
这里是说不清的
2、基因表达载体的构建
(1)目的:使目的基因在受体细胞中稳定存在并且可以遗传给下一代并表达和发挥作用.(2)基因表达载体的组成:目的基因+启动子+终止子+标记基因
②启动子在基因的首段,它是RNA聚合酶的结合位点,能控制着转录的开始,故②正确;
③终止子在基因的尾端,它控制着转录的结束,故③正确;
④由于受体细胞有植物、动物以及微生物之分,以及目的基因导入受体细胞的方法不同,因此基因表达载体的构建是不完全相同的,

