商品信息
联系客服
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
BIOLOGICAL INFORMATION
DescriptionThis peptide consists of two amino acids, Ala and Gly, and is provided at >95% purity.
ApplicationMelanocortin
NoteFor research only, not for human use!
CHEMICAL INFORMATION
CAT No.ONP10201
CAS No.687-69-4
NameAG
Chemical NameAG
Purity≥98%
SynonymsN/A
FormulaC5H10N2O3
Molecular Weight146.2
One Letter CodeAG
Three Letter CodeH-Ala-Gly-OH
SMILESCC(C(=O)NCC(=O)O)N
InChI KeyCXISPYVYMQWFLE-VKHMYHEASA-N
SourceSynthetic
FormDry Powder
ColorWhite
SolubilityN/A
SHIPPING & STORAGE
Storage4 degree ℃ for short term (weeks) and -20 degree ℃ for long term.
ShippingBlue Ice
Stability≥ 2 years
REFERENCES & CITATIONS
1.S.Dalal et al., Mol. Biochem. Parasitol., 183, 70 (2012)
2.J.Neu et al., Invest. Ophthalmol. Vis. Sci., 47, 3151 (2006)
3.C.Schiene-Fischer and G.Fischer, J. Am. Chem. Soc., 123, 6227 (2001)
DOCUMENTATIONS
- COA
- Data sheet
- MS
- RP-HPLC
- MSDS
- Handling Instruction
PROMOTIONS & EVENTS

蚂蚁淘电商平台
ebiomall.com
ebiomall.com
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台,
该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁
淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、
运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯
蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧
蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事
蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务
蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
2018-12-26
原核细胞l 用IPTG诱导启动子在大肠杆菌中表达克隆化基因含重组表达载体的大肠杆菌菌株的构建1. PCR修饰或限制性内切酶消化分离DNA片段,片段5’端和3’端带有与IPTG诱导表达载体对应的限制酶位点。2. 含靶cDNA/基因的DNA片段与表达载体连接。3. 重组质粒转化有lacIq 等位基因的大肠杆菌菌株。如果质 查看更多
>
2021-08-08
PCR(Polymerase Chain Reaction)即聚合酶链式反应是1986 年由Kallis Mullis 发现。这项技术已广泛地应用于分子生物学各个领域,它不仅可用于基因分离克隆和核酸序列分析,还可用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析,遗传病和传染病诊断,肿瘤机制探查,法医鉴定等方面。 PCR技术已成为方法学上的一次革命,它必将大大推动分子生物学各学科的研究发展。 查看更多
>
2021-07-29
聚合酶链式反应-单链构象多态(Polymerase Chain Reaction-Single Strand Conformation Polymorphism,PCR-SSCP)技术是在PCR技术基础上发展起来的,它是一种简单、快速、经济的用来显示在PCR反应产物中单碱基突变(点突变)的手段。该方法已被用做癌基因和抑癌基因突变的筛查检测,遗传病的致病基因分析和基因诊断,基因制图等领域。 查看更多
>
2021-08-22
SSLP 是含有短的简单序列重复的 DNS 片段,如 (CA),这些重复分散存在于真核基因组 DNA 中。由于这些 SSLP 在长度上的多态,即等位基因间重复次数的多态,SSLP 是非常有用的遗传学标志。用这些方法达到自动化分型每个标志的关键步骤是选择合适的重复单元侧翼序列的 PCR 引物。 查看更多
>
2021-09-12
本方案描述了通过 PCR 扩增产物,来制作 cDNA 微阵列的实验步骤。本实验来源于 PCR 实验指南(第二版),作者:种康,瞿礼嘉。 查看更多
>
2018-11-28
Primerdesign公司产品介绍【代理商代购现货】 查看更多
>
2021-08-01
TA克隆 系统由Invitrogen公司(San Diego,CA)发展而来的商业性试剂盒,它用于PCR 产物的克隆 和测序。其原理是利用Taq酶能够在PCR 产物的3’末端加上一个非模板依赖的A,而T载体是一种带有3’T突出端的载体,在连接酶作用下,可以快速地、一步到位地把PCR 产物直接插入到质粒载体的多克隆 位点(MCS)中。 查看更多
>
2021-09-02
端粒是真核生物染色体末端的特异DNA-蛋白结构,端粒DNA是一系列重复的富含G的DNA序列,这一序列在生物进化中有高度的保守性(人重复序列为TTAGGG)。已确认端粒在保护基因组DNA不被降解、防止染色体有害的结合(如染色体末端融合、重排、染色体移位和染色体缺失)中起重要作用。 查看更多
>
2021-07-14
在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩... 查看更多
>
2021-08-03
重组DNA技术是现代分子生物技术发展中最重要的成就之一。即是基因工程(Gene Engineering)的核心技术。重组DNA技术(Recombinant DNA Technique)是人类根据需要选择目的基因(DNA片段)在体外与基因运载体重组,转移至另一细胞或生物体内,以达到改良和创造新的物种和治疗人类疾病的目的。 查看更多
>
2018-11-28
GenHunter Corporation公司产品介绍【代理商代购现货】 查看更多
>
2021-09-15
对CGG重复片段的PCR分析要比Southern分析(基本方案2)快,且能够准确确定正常片段(6~45次重复)、中间状态(45~55次重复)及前突变单体情况(55~200 次重复)。PCR同时也能够检测出各世代间重复次数的小的改变。在PCR反应中用7-deaza-2'-dGTP代替dGTP可以完成常规PCR反应无法完成的全突变(>200次重复)的扩增。 查看更多
>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑;
Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员,
或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
基因克隆的几种常见方法 123
sunny1s52021-08-25
工复制基
【求助】如何才算完整地克隆一个基因? 核酸基因技术讨论版...123
ziteng1112021-07-23
我现在需要克隆一个基因的全长编码序列,不知道该怎么办?能教教我吗?还有,我想请教一下,有没有什么网站可以明了的查到某种动物一个基因的外显子数目?谢谢了!
【交流】求助一个5kb的基因克隆该怎么做 核酸基因技术讨论版...123
唯爱一萌9037022021-08-05
首先看看基否基库否相关类似报道,进行功能鉴定,确定其功能,完整基等. 复 1, 首先确定完整基,游完整启序列,游终止序列. 2, 否明确功能 3, 同源性比较:若功能,同源性高算新基.(看自要求,同物种相同功能同源性高差异叫新基. 单若功能,并且同源性低,真新基!) 复 首先要拿 mRNA序列全序列用RACE拿全其表达 蛋白进行预测选定通读筐mRNA,蛋白进行库序列比看否已经报道基文库预测蛋白二级结构找其domain, 看候同源蛋白则domain报道都没肯定新基 mRNA水平看其表达情况看能否进行功能析做基重要发nature 或science文章发文章怕比超越 复 我些体 1、定搜索数据库某已知基相似性达百八、九十新基结论要慎重 2、定要做Southerm blot 3、必须比较充功能证据比完整读码框;Northern证实转录等
你认为目前若实施人类克隆,在技术上还存在哪些难题?会引起哪些...123
╲°泪祭_78812021-07-25
基检测:
DNA杂交技术
DNA-RNA杂交技术
抗体抗原杂交技术
DNA杂交技术
DNA-RNA杂交技术
抗体抗原杂交技术
怎样克隆基因家族中的一个特定基因 分子生物 综合其他...123
蘇荷‖wecp↖2017-11-07
基克隆需要烟草内验证功能
基克隆利用体外重组技术,特定基其DNA顺序插入载体基克隆主要目标识别、离特异基并获基完整 全序列,确定染色体定位,阐明基化功能,明确其特定性状遗传控制关系通几十努力由于植物发育,理化,遗传等科迅速发展,使 掌握量关植物优良性状基物遗传知识,再运用先进酶物技术已经克隆与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质 及与植物发育关许基我实验室麻抗真菌蛋白基作功能克隆研究(舒群芳等,1995;舒群芳等,1997),克隆植物基探讨 其克隆,本文论述基克隆策略、及取些进展
1 功能克隆(functional Cloning)
功能克 隆根据性状基本化特性功能信息,鉴定已知基功能克隆(Collis,1995)其具体作:纯化相应编码蛋白构建 cDNA文库或基组文库,DNA文库基筛选根据情况主要用二种办进行,(1)纯化蛋白质进行氨基酸测序,据合寡核苷酸探针cDNA 库或基组文库筛选编码基,(2)相应编码蛋白制相应抗体探针,cDNA入载体表达库筛选相应克隆功能克隆种经典基克隆策略, 基离利用种策略
Hain等葡萄克隆两编码白藜芦醇合二苯乙烯合酶基(Vst1Vst2),葡萄抗菌化合 物白藜芦醇存,提高灰质葡萄孢(Botrytis cinerce)抗性,烟草其些植物二苯乙烯合酶,克隆该基经转基,些植物产灰质葡萄孢抗性意义(Hain 等,1985)Kondo等1989编码水稻巯基蛋白酶抑制剂基组DNA做克隆序列析(Kondo等,1989)周兆斓等构建水稻 cDNA文库,离编码水稻巯基蛋白酶抑制剂cDNA(周兆斓等,1996)植物蛋白酶抑制剂类抗虫物质,抑制摄食害虫蛋白质消 化,使害虫缺乏所需氨基酸导致非发育或死亡胡华等烟草离流行于我黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆编码该病毒外壳蛋白cDNA基(胡华等,1989)王春香等病烟草叶片离纯化马铃薯x病毒 (potato virus X, pvx),克隆完整马铃薯x病毒外壳蛋白基,并外壳蛋白基转入马铃薯,期获抗pvx病毒栽培种马铃薯(王春香等,1991)病毒外壳 蛋白(Coat protein cp)基功克隆,使转基植物产病毒外壳蛋白基介导抗性(Coat Protein Mediated Resistance CPMR)或病毒CP-RNA介导抗性Van kan 报道真菌功克隆毒基Avr9,直接利用基介导广谱高效基工程植物(Van Kan等,1991)我1995构建麻cDNA文库,制备抗体探针功离编码麻抗真菌蛋白基cDNA克隆,抗真菌基农业、医 药等面应用打基础(舒群芳等,1995;舒群芳等,1997)功能克隆特点用基表达产物蛋白质克隆基、虽某性状编码基未 知其理化及代谢途径研究比较清楚,离纯化控制该性状蛋白质功能克隆关键离纯度高蛋白质要纯 蛋白质,十特异探针,策略行效采用功能克隆虽已经克隆基,由于绝数基产物目前知道所数基 难用经典克隆随着物技术发展,条新基克隆策略逐渐形,定位克隆
2 定位克隆(Positional cloning)
根据遗传连锁析,染色体步移基定位染色体具体位置断缩筛选区域进克隆该基,研究该基功能或抗性化机制,种策略 叫定位克隆(Monaco,1994)连锁析即通基与DNA标记间重组系数估计两者间距离,若某种性状基与DNA标记代 离,即连锁起趋势根据原理与已知某DNA标记连锁基染色体定位由于连锁析需要依赖特定基作连锁标记,即标记基 与待研基间存连锁关系,满足与待研基相连锁基实太少,所连锁析克隆数基存着定困难RFLP现使态性基标记存 于整基组内,解决连锁析难克服困难
1980Wyman等科家首建立限制酶切片段度态性RFLP (restriction fragment length polymorphism),使任何种表型相关基定位能限制酶切片段度态性用限制性内切酶切割产DNA片段度态性呈 孟德尔式遗传,存于全基组独特态标记,RFLP使基定位变易行(Wyman等,1980)目前定位克隆般用RFLP等标记制作 遗传图谱,寻找与待测基连锁RFLP标记,获基染色体定位克隆基所RFLP发展起RAPD技术建立,待测基相 准确定位,利用已知基离与连锁未知基其基本程序构建基组文库、用已知A基探针,基组文库筛选与其同源序列 a克隆,再用a克隆探针基组文库筛选与a克隆同源序列b克隆,类推筛选未知基并离目前已番茄、烟草、麦、 水稻、豆、玉米等植物发现与抗病基紧密连锁RFLP标记并构建遗传图谱(Figdore等,1988;Heun等,1991;Smith, 1991;Diers等,1992)用种已别克隆拟南芥菜、番茄、水稻等植物关抗病基(Martin等,1993;Bent等, 1994;Mindrinos等,1994;Wenyuan等,1995) Martin等1993早用定位克隆技术克隆番茄pto基,pto基负责带毒基Avrpto细菌,丁香假单胞菌 (pseudomonas syringae pv)菌株抗性,Pto基导入病番茄转基植株增强病原菌抗性(Martin等,1993)Wenyuan等1995用技术克隆 水稻Xa21基,Xa21基真菌Xanthomonas oryzae pv oryzae (Xoo)具抗性(Wenyuan等,1995)
基克隆利用体外重组技术,特定基其DNA顺序插入载体基克隆主要目标识别、离特异基并获基完整 全序列,确定染色体定位,阐明基化功能,明确其特定性状遗传控制关系通几十努力由于植物发育,理化,遗传等科迅速发展,使 掌握量关植物优良性状基物遗传知识,再运用先进酶物技术已经克隆与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质 及与植物发育关许基我实验室麻抗真菌蛋白基作功能克隆研究(舒群芳等,1995;舒群芳等,1997),克隆植物基探讨 其克隆,本文论述基克隆策略、及取些进展
1 功能克隆(functional Cloning)
功能克 隆根据性状基本化特性功能信息,鉴定已知基功能克隆(Collis,1995)其具体作:纯化相应编码蛋白构建 cDNA文库或基组文库,DNA文库基筛选根据情况主要用二种办进行,(1)纯化蛋白质进行氨基酸测序,据合寡核苷酸探针cDNA 库或基组文库筛选编码基,(2)相应编码蛋白制相应抗体探针,cDNA入载体表达库筛选相应克隆功能克隆种经典基克隆策略, 基离利用种策略
Hain等葡萄克隆两编码白藜芦醇合二苯乙烯合酶基(Vst1Vst2),葡萄抗菌化合 物白藜芦醇存,提高灰质葡萄孢(Botrytis cinerce)抗性,烟草其些植物二苯乙烯合酶,克隆该基经转基,些植物产灰质葡萄孢抗性意义(Hain 等,1985)Kondo等1989编码水稻巯基蛋白酶抑制剂基组DNA做克隆序列析(Kondo等,1989)周兆斓等构建水稻 cDNA文库,离编码水稻巯基蛋白酶抑制剂cDNA(周兆斓等,1996)植物蛋白酶抑制剂类抗虫物质,抑制摄食害虫蛋白质消 化,使害虫缺乏所需氨基酸导致非发育或死亡胡华等烟草离流行于我黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆编码该病毒外壳蛋白cDNA基(胡华等,1989)王春香等病烟草叶片离纯化马铃薯x病毒 (potato virus X, pvx),克隆完整马铃薯x病毒外壳蛋白基,并外壳蛋白基转入马铃薯,期获抗pvx病毒栽培种马铃薯(王春香等,1991)病毒外壳 蛋白(Coat protein cp)基功克隆,使转基植物产病毒外壳蛋白基介导抗性(Coat Protein Mediated Resistance CPMR)或病毒CP-RNA介导抗性Van kan 报道真菌功克隆毒基Avr9,直接利用基介导广谱高效基工程植物(Van Kan等,1991)我1995构建麻cDNA文库,制备抗体探针功离编码麻抗真菌蛋白基cDNA克隆,抗真菌基农业、医 药等面应用打基础(舒群芳等,1995;舒群芳等,1997)功能克隆特点用基表达产物蛋白质克隆基、虽某性状编码基未 知其理化及代谢途径研究比较清楚,离纯化控制该性状蛋白质功能克隆关键离纯度高蛋白质要纯 蛋白质,十特异探针,策略行效采用功能克隆虽已经克隆基,由于绝数基产物目前知道所数基 难用经典克隆随着物技术发展,条新基克隆策略逐渐形,定位克隆
2 定位克隆(Positional cloning)
根据遗传连锁析,染色体步移基定位染色体具体位置断缩筛选区域进克隆该基,研究该基功能或抗性化机制,种策略 叫定位克隆(Monaco,1994)连锁析即通基与DNA标记间重组系数估计两者间距离,若某种性状基与DNA标记代 离,即连锁起趋势根据原理与已知某DNA标记连锁基染色体定位由于连锁析需要依赖特定基作连锁标记,即标记基 与待研基间存连锁关系,满足与待研基相连锁基实太少,所连锁析克隆数基存着定困难RFLP现使态性基标记存 于整基组内,解决连锁析难克服困难
1980Wyman等科家首建立限制酶切片段度态性RFLP (restriction fragment length polymorphism),使任何种表型相关基定位能限制酶切片段度态性用限制性内切酶切割产DNA片段度态性呈 孟德尔式遗传,存于全基组独特态标记,RFLP使基定位变易行(Wyman等,1980)目前定位克隆般用RFLP等标记制作 遗传图谱,寻找与待测基连锁RFLP标记,获基染色体定位克隆基所RFLP发展起RAPD技术建立,待测基相 准确定位,利用已知基离与连锁未知基其基本程序构建基组文库、用已知A基探针,基组文库筛选与其同源序列 a克隆,再用a克隆探针基组文库筛选与a克隆同源序列b克隆,类推筛选未知基并离目前已番茄、烟草、麦、 水稻、豆、玉米等植物发现与抗病基紧密连锁RFLP标记并构建遗传图谱(Figdore等,1988;Heun等,1991;Smith, 1991;Diers等,1992)用种已别克隆拟南芥菜、番茄、水稻等植物关抗病基(Martin等,1993;Bent等, 1994;Mindrinos等,1994;Wenyuan等,1995) Martin等1993早用定位克隆技术克隆番茄pto基,pto基负责带毒基Avrpto细菌,丁香假单胞菌 (pseudomonas syringae pv)菌株抗性,Pto基导入病番茄转基植株增强病原菌抗性(Martin等,1993)Wenyuan等1995用技术克隆 水稻Xa21基,Xa21基真菌Xanthomonas oryzae pv oryzae (Xoo)具抗性(Wenyuan等,1995)
设计克隆表达引物一定要从ATG和TAG开始吗? 分子生物 ...123
wrongdna2021-08-19
请教在一般情况下要克隆一个真核生物的蛋白质编码基因从而得到该蛋白质产物,是要从信号肽开始还是直接从成熟肽开始,为什么?还请赐教!
【求助】如何克隆启动子 经验共享 123
drcrc2021-08-24
打算克隆某个基因的启动子,基因5‘端上游基因组序列,在pubmed里能查到。
是不是只要从细胞里面提取基因组DNA,然后按照pubmed上的5端上游序列做一个PCR就可以了?
是不是只要从细胞里面提取基因组DNA,然后按照pubmed上的5端上游序列做一个PCR就可以了?
克隆技术的好处或坏处有哪些,克隆给人带来的好处与坏处?123
2017-11-01
列举几
RNA干扰的作用机制及小干扰RNA的合成方法 123
TD哥哥34972017-11-01
许多国外公司都可以根据用户要求提供高质量的化学合成siRNA。主要的缺点包括价格高,定制周期长,特别是有特殊需求的。由于价格比其他方法高,为一个基因合成3—4对siRNAs 的成本就更高了,比较常见的做法是用其他方法筛选出最有效的序列再进行化学合成。
最适用于:已经找到最有效的siRNA的情况下,需要大量siRNA进行研究。
不适用于:筛选siRNA等长时间的研究,主要原因是价格因素。 以DNA Oligo为模版,通过体外转录合成siRNAs,成本相对化学合成法而言比较低,而且能够比化学合成法更快的得到siRNAs。不足之处是实验的规模受到限制,虽然一次体外转录合成能提供足够做数百次转染的siRNAs,但是反应规模和量始终有一定的限制。而且和化学合成相比,还是需要占用研究人员相当的时间。值得一提的是体外转录得到的siRNAs毒性小,稳定性好,效率高,只需要化学合成的siRNA量的1/10就可以达到化学合成siRNA所能达到的效果,从而使转染效率更高。
最适用于:筛选siRNAs,特别是需要制备多种siRNAs,化学合成的价格成为障碍时。
不适用于:实验需要大量的,一个特定的siRNA。长期研究。
用RNase Ⅲ 消化长片断双链RNA制备siRNA
其他制备siRNA的方法的缺陷是需要设计和检验多个siRNA序列以便找到一个有效的siRNA。而用这种方法——制备一份混合有各种siRNAs “混合鸡尾酒” 就可以避免这个缺陷。选择通常是200—1000碱基的靶mRNA模版,用体外转录的方法制备长片断双链dsRNA ,然后用RNase Ⅲ (or Dicer) 在体外消化,得到一种siRNAs“混合鸡尾酒”。在除掉没有被消化的dsRNA后,这个siRNA混合物就可以直接转染细胞,方法和单一的siRNA转染一样。由于siRNA混合物中有许多不同的siRNAs,通常能够保证目的基因被有效地抑制。
dsRNA消化法的主要优点在于可以跳过检测和筛选有效siRNA序列的步骤,为研究人员节省时间和金钱(注意:通常用RNAse Ⅲ通常比用Dicer要便宜)。不过这种方法的缺点也很明显,就是有可能引发非特异的基因沉默,特别是同源或者是密切相关的基因。多数的研究显示这种情况通常不会造成影响。
最适用于:快速而经济地研究某个基因功能缺失的表型
不适用于:长时间的研究项目,或者是需要一个特定的siRNA进行研究,特别是基因治疗 多数的siRNA表达载体依赖三种RNA聚合酶Ⅲ启动子(pol Ⅲ)中的一种,操纵一段小的发夹RNA(short hairpin RNA,shRNA)在哺乳动物细胞中的表达。这三类启动子包括大家熟悉的人源和鼠源的U6启动子和人H1启动子。之所以采用RNA pol Ⅲ启动子是由于它可以在哺乳动物细胞中表达更多的小分子RNA,而且它是通过添加一串(3到6个)U来终止转录的。要使用这类载体,需要订购2段编码短发夹RNA序列的DNA单链,退火,克隆到相应载体的pol Ⅲ 启动子下游。由于涉及到克隆,这个过程需要几周甚至数月的时间,同时也需要经过测序以保证克隆的序列是正确的。
siRNA表达载体的优点在于可以进行较长期研究——带有抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持续数星期甚至更久。
病毒载体也可用于siRNA表达,其优势在于可以直接高效率感染细胞进行基因沉默的研究,避免由于质粒转染效率低而带来的种种不便,而且转染效果更加稳定。
最适用于:已知一个有效的siRNA序列,需要维持较长时间的基因沉默。
不适用于:筛选siRNA序列(其实主要是指需要多个克隆和测序等较为费时、繁琐的工作)。 siRNA表达框架(siRNA expression cassettes,SECs)是一种由PCR得到的siRNA表达模版,包括一个RNA pol Ⅲ启动子,一段发夹结构siRNA,一个RNA pol Ⅲ终止位点,能够直接导入细胞进行表达而无需事前克隆到载体中。和siRNA表达载体不同的是,SECs不需要载体克隆、测序等颇为费时的步骤,可以直接由PCR得到,不用一天的时间。因此,SECs成为筛选siRNA的最有效工具,甚至可以用来筛选在特定的研究体系中启动子和siRNA的最适搭配。如果在PCR两端添加酶切位点,那么通过SECs筛选出的最有效的siRNA后,可以直接克隆到载体中构建siRNA表达载体。构建好的载体可以用于稳定表达siRNA和长效抑制的研究。
这个方法的主要缺点是①PCR产物很难转染到细胞中(晶赛公司的Protocol可以解决这一问题)②不能进行序列测定,PCR和DNA合成时可能差生的误读不能被发现导致结果不理想。
最适用于:筛选siRNA序列,在克隆到载体前筛选最佳启动子
不适用于:长期抑制研究。(如果克隆到载体后就可以了)向左转|向右转
最适用于:已经找到最有效的siRNA的情况下,需要大量siRNA进行研究。
不适用于:筛选siRNA等长时间的研究,主要原因是价格因素。 以DNA Oligo为模版,通过体外转录合成siRNAs,成本相对化学合成法而言比较低,而且能够比化学合成法更快的得到siRNAs。不足之处是实验的规模受到限制,虽然一次体外转录合成能提供足够做数百次转染的siRNAs,但是反应规模和量始终有一定的限制。而且和化学合成相比,还是需要占用研究人员相当的时间。值得一提的是体外转录得到的siRNAs毒性小,稳定性好,效率高,只需要化学合成的siRNA量的1/10就可以达到化学合成siRNA所能达到的效果,从而使转染效率更高。
最适用于:筛选siRNAs,特别是需要制备多种siRNAs,化学合成的价格成为障碍时。
不适用于:实验需要大量的,一个特定的siRNA。长期研究。
用RNase Ⅲ 消化长片断双链RNA制备siRNA
其他制备siRNA的方法的缺陷是需要设计和检验多个siRNA序列以便找到一个有效的siRNA。而用这种方法——制备一份混合有各种siRNAs “混合鸡尾酒” 就可以避免这个缺陷。选择通常是200—1000碱基的靶mRNA模版,用体外转录的方法制备长片断双链dsRNA ,然后用RNase Ⅲ (or Dicer) 在体外消化,得到一种siRNAs“混合鸡尾酒”。在除掉没有被消化的dsRNA后,这个siRNA混合物就可以直接转染细胞,方法和单一的siRNA转染一样。由于siRNA混合物中有许多不同的siRNAs,通常能够保证目的基因被有效地抑制。
dsRNA消化法的主要优点在于可以跳过检测和筛选有效siRNA序列的步骤,为研究人员节省时间和金钱(注意:通常用RNAse Ⅲ通常比用Dicer要便宜)。不过这种方法的缺点也很明显,就是有可能引发非特异的基因沉默,特别是同源或者是密切相关的基因。多数的研究显示这种情况通常不会造成影响。
最适用于:快速而经济地研究某个基因功能缺失的表型
不适用于:长时间的研究项目,或者是需要一个特定的siRNA进行研究,特别是基因治疗 多数的siRNA表达载体依赖三种RNA聚合酶Ⅲ启动子(pol Ⅲ)中的一种,操纵一段小的发夹RNA(short hairpin RNA,shRNA)在哺乳动物细胞中的表达。这三类启动子包括大家熟悉的人源和鼠源的U6启动子和人H1启动子。之所以采用RNA pol Ⅲ启动子是由于它可以在哺乳动物细胞中表达更多的小分子RNA,而且它是通过添加一串(3到6个)U来终止转录的。要使用这类载体,需要订购2段编码短发夹RNA序列的DNA单链,退火,克隆到相应载体的pol Ⅲ 启动子下游。由于涉及到克隆,这个过程需要几周甚至数月的时间,同时也需要经过测序以保证克隆的序列是正确的。
siRNA表达载体的优点在于可以进行较长期研究——带有抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持续数星期甚至更久。
病毒载体也可用于siRNA表达,其优势在于可以直接高效率感染细胞进行基因沉默的研究,避免由于质粒转染效率低而带来的种种不便,而且转染效果更加稳定。
最适用于:已知一个有效的siRNA序列,需要维持较长时间的基因沉默。
不适用于:筛选siRNA序列(其实主要是指需要多个克隆和测序等较为费时、繁琐的工作)。 siRNA表达框架(siRNA expression cassettes,SECs)是一种由PCR得到的siRNA表达模版,包括一个RNA pol Ⅲ启动子,一段发夹结构siRNA,一个RNA pol Ⅲ终止位点,能够直接导入细胞进行表达而无需事前克隆到载体中。和siRNA表达载体不同的是,SECs不需要载体克隆、测序等颇为费时的步骤,可以直接由PCR得到,不用一天的时间。因此,SECs成为筛选siRNA的最有效工具,甚至可以用来筛选在特定的研究体系中启动子和siRNA的最适搭配。如果在PCR两端添加酶切位点,那么通过SECs筛选出的最有效的siRNA后,可以直接克隆到载体中构建siRNA表达载体。构建好的载体可以用于稳定表达siRNA和长效抑制的研究。
这个方法的主要缺点是①PCR产物很难转染到细胞中(晶赛公司的Protocol可以解决这一问题)②不能进行序列测定,PCR和DNA合成时可能差生的误读不能被发现导致结果不理想。
最适用于:筛选siRNA序列,在克隆到载体前筛选最佳启动子
不适用于:长期抑制研究。(如果克隆到载体后就可以了)向左转|向右转
一个基因没有克隆到全长序列可以做实时定量分析吗 分子生物 ...123
村里那点事TA停2017-11-07
便宜找找别没直接问别要合每碱基1块钱左右吧
DNA拓扑异构酶概述123
0864181662017-11-07
依托泊苷,抑制有丝分裂,属于细胞周期特异性药物,使细胞分裂停止于S期或G2期,此方案应先用VP-16,后顺铂:VP-16的作用靶点是DNA拓扑异构酶Ⅱ。顺铂属于细胞周期非特异性药物
【原创】荧光原位杂交(FISH)探针的制备及其应用 核酸基因技术 丁香 ...123
issacfish2021-08-22
最近有一些战友对荧光原位杂交技术比较感兴趣,我整理了相关资料和自己的心得,和大家交流一下。不妥之处,请大家指出,共同讨论学习。
内容发布在蚂蚁淘和螺旋网上,有兴趣的战友也可以去那里看一下。
内容分三部分:
一、概述
1、克隆性染色体异常是肿瘤的特征
2、染色体异常常见的类型
3、染色体异常的检测方法
二、荧光原位杂交及其探针
1、荧光原位杂交的原理
2、荧光原位杂交的探针
三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍)
:D
FISH.pdf(1237.91k)
内容发布在蚂蚁淘和螺旋网上,有兴趣的战友也可以去那里看一下。
内容分三部分:
一、概述
1、克隆性染色体异常是肿瘤的特征
2、染色体异常常见的类型
3、染色体异常的检测方法
二、荧光原位杂交及其探针
1、荧光原位杂交的原理
2、荧光原位杂交的探针
三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍)
:D
FISH.pdf(1237.91k)

▍
品牌分类
▍
品牌问答
