
850356 | 4ME 16:0 PC
1,2-diphytanoyl-sn-glycero-3-phosphocholine

4ME 16:0 PC
1,2-diphytanoyl-sn-glycero-3-phosphocholine
Lipids containing diphytanoyl fatty acid chains have been used to produce stable planar lipid membranes (see References). Diphytanoyl phosphatidylcholine does not exhibit a detectable gel to liquid crystalline phase transition from -120°C to +120°C.
The list of Phosphatidylcholine products offered by Avanti is designed to provide compounds having a variety of physical properties. Products available include short chain (C3-C8 are water soluble and hygroscopic), saturated, multi-unsaturated and mixed acid PC"s. All of the products are purified by HPLC, and special precautions are taken to protect the products from oxidization and hydrolysis. Several of these products are manufactured under the current guidelines of Good Manufacturing Practice and are available for pharmaceutical use. If you have a requirement for a choline derivative not found on our list, please call us: custom synthesis is one of our specialties.
- ChemDraw File
- 3D Structure
- Structure
- Transition Temperature Of Diphytanoyl Pc
- Safety Data Sheet
- Safety Data Sheet
Knapp O, Maier E, Piselli C, Benz R, Hoxha C, Popoff MR. Central residues of the amphipathic β-hairpin loop control the properties of Clostridium perfringens epsilon-toxin channel. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183364. doi: 10.1016/j.bbamem.2020.183364. Epub 2020 May 22. PMID: 32450142.
PubMed ID: 32450142Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem. 2020 May 12:jbc.RA120.013508. doi: 10.1074/jbc.RA120.013508. Epub ahead of print. PMID: 32398259.
PubMed ID: 32398259Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem. 2020 May 14:jbc.RA120.012921. doi: 10.1074/jbc.RA120.012921. Epub ahead of print. PMID: 32409576.
PubMed ID: 32409576Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2020 Apr 27. doi: 10.1111/febs.15340. Epub ahead of print. PMID: 32338825.
PubMed ID: 32338825Bafna JA, Sans-Serramitjana E, Acosta-Gutiérrez S, Bodrenko IV, Hörömpöli D, Berscheid A, Brötz-Oesterhelt H, Winterhalter M, Ceccarelli M. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect Dis. 2020 May 20. doi: 10.1021/acsinfecdis.0c00102. Epub ahead of print. PMID: 32369342.
PubMed ID: 32369342Lei J, Huang Y, Zhong W, Xiao D, Zhou C. Early Monitoring Drug Resistant Mutation T790M with a Two-Dimensional Simultaneous Discrimination Nanopore Strategy. Anal Chem. 2020 Jun 8. doi: 10.1021/acs.analchem.0c00575. Epub ahead of print. PMID: 32452671.
PubMed ID: 32452671Wei X, Ma D, Zhang Z, Wang LY, Gray JL, Zhang L, Zhu T, Wang X, Lenhart BJ, Yin Y, Wang Q, Liu C. N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sens. 2020 May 26. doi: 10.1021/acssensors.0c00345. Epub ahead of print. PMID: 32403927.
PubMed ID: 32403927Rosen CB, Bayley H, Rodriguez-Larrea D. Free-energy landscapes of membrane co-translocational protein unfolding. Commun Biol. 2020 Apr 3;3(1):160. doi: 10.1038/s42003-020-0841-4. PMID: 32246057; PMCID: PMC7125183.
PubMed ID: 32246057Feng J, Martin-Baniandres P, Booth MJ, Veggiani G, Howarth M, Bayley H, Rodriguez-Larrea D. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Commun Biol. 2020 Apr 3;3(1):159. doi: 10.1038/s42003-020-0840-5. PMID: 32246060; PMCID: PMC7125113.
PubMed ID: 32246060Li SP, Zhang YC, Hu FZ, Sabaretnam T, Guillemin GJ, Zou AH. Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry. 2020 Aug;134:107534. doi: 10.1016/j.bioelechem.2020.107534. Epub 2020 Apr 17. PMID: 32335354.
PubMed ID: 32335354Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.
PubMed ID: 32175748Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J. 2020 Mar 19. doi: 10.1096/fj.201902816R. Epub ahead of print. PMID: 32190927.
PubMed ID: 32190927Matsushita M, Shoji K, Takai N, Kawano R. Biological Nanopore Probe: Probing of Viscous Solutions in a Confined Nanospace. J Phys Chem B. 2020 Mar 26;124(12):2410-2416. doi: 10.1021/acs.jpcb.9b11096. Epub 2020 Feb 26. PMID: 32031807.
PubMed ID: 32031807Sabirovas T, Valiūnienė A, Gabriunaite I, Valincius G. Mixed hybrid bilayer lipid membranes on mechanically polished titanium surface. Biochim Biophys Acta Biomembr. 2020 Feb 28;1862(6):183232. doi: 10.1016/j.bbamem.2020.183232. Epub ahead of print. PMID: 32119863.
PubMed ID: 32119863Ramm F, Dondapati SK, Thoring L, Zemella A, Wüstenhagen DA, Frentzel H, Stech M, Kubick S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci Rep. 2020 Feb 19;10(1):2887. doi: 10.1038/s41598-020-59634-8. PMID: 32076011; PMCID: PMC7031377.
PubMed ID: 32076011Ji Z, Jordan M, Jayasinghe L, Guo P. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. Nanomedicine. 2020 Feb 6;25:102170. doi: 10.1016/j.nano.2020.102170. Epub ahead of print. PMID: 32035271.
PubMed ID: 32035271Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem. 2020 Mar 3;92(5):3827-3833. doi: 10.1021/acs.analchem.9b05249. Epub 2020 Feb 20. PMID: 32048508.
PubMed ID: 32048508Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.
PubMed ID: 32175748Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Hong Zhou Z, Krantz BA. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat Commun. 2020 Feb 11;11(1):840. doi: 10.1038/s41467-020-14658-6. PMID: 32047164; PMCID: PMC7012834.
PubMed ID: 32047164Das D, Bao H, Courtney KC, Wu L, Chapman ER. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Nat Commun. 2020 Jan 13;11(1):231. doi: 10.1038/s41467-019-14072-7. PMID: 31932584; PMCID: PMC6957489.
PubMed ID: 31932584Wang J, Li MY, Yang J, Wang YQ, Wu XY, Huang J, Ying YL, Long YT. Direct Quantification of Damaged Nucleotides in Oligonucleotides Using an Aerolysin Single Molecule Interface. ACS Cent Sci. 2020 Jan 22;6(1):76-82. doi: 10.1021/acscentsci.9b01129. Epub 2020 Jan 9. PMID: 31989027; PMCID: PMC6978832.
PubMed ID: 31989027Vikraman D, Satheesan R, Kumar KS, Mahendran KR. Nanopore Passport Control for Substrate-Specific Translocation. ACS Nano. 2020 Jan 29:10.1021/acsnano.9b09408. doi: 10.1021/acsnano.9b09408. Epub ahead of print. PMID: 31976649.
PubMed ID: 31976649Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. Adv Sci (Weinh). 2019 Oct 24;7(1):1901719. doi: 10.1002/advs.201901719. PMID: 31921557; PMCID: PMC6947711.
PubMed ID: 31921557Su Z, Juhaniewicz-Debinska J, Sek S, Lipkowski J. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. Langmuir. 2020 Jan 14;36(1):409-418. doi: 10.1021/acs.langmuir.9b03271. Epub 2019 Dec 23. PMID: 31815479.
PubMed ID: 31815479Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules. 2019 Dec 10;9(12):E853. doi: 10.3390/biom9120853. PMID: 31835568.
PubMed ID: 31835568Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem. 2020 Jan 21;92(2):1730-1737. doi: 10.1021/acs.analchem.9b02965. Epub 2020 Jan 7. PMID: 31869203.
PubMed ID: 31869203Snead WT, Zeno WF, Kago G, Perkins RW, Richter JB, Zhao C, Lafer EM, Stachowiak JC. BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30. PMID: 30504247; PMCID: PMC6363457.
PubMed ID: 30504247Cao J, Jia W, Zhang J, Xu X, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat Commun. 2019 Dec 11;10(1):5668. doi: 10.1038/s41467-019-13677-2.
PubMed ID: 31827098Ouldali H, Sarthak K, Ensslen T, Piguet F, Manivet P, Pelta J, Behrends JC, Aksimentiev A, Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat Biotechnol. 2019 Dec 16. doi: 10.1038/s41587-019-0345-2. [Epub ahead of print]
PubMed ID: 31844293Yamada T, Kamiya K, Osaki T, Takeuchi S. A pumpless solution exchange system for nanopore sensors. Biomicrofluidics. 2019 Nov 4;13(6):064104. doi: 10.1063/1.5123316. eCollection 2019 Nov.
PubMed ID: 31700563Aminipour Z, Khorshid M, Keshvari H, Bonakdar S, Wagner P, Van der Bruggen B. Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. Eur J Pharm Biopharm. 2020 Jan;146:133-142. doi: 10.1016/j.ejpb.2019.10.011. Epub 2019 Nov 5.
PubMed ID: 31698041Su Z, Wei Y, Kang XF. Simultaneous High-Resolution Detection of Bioenergetic Molecules using Biomimetic-Receptor Nanopore. Anal Chem. 2019 Dec 3;91(23):15255-15259. doi: 10.1021/acs.analchem.9b04268. Epub 2019 Nov 11.
PubMed ID: 31665602Cao C, Cirauqui N, Marcaida MJ, Buglakova E, Duperrex A, Radenovic A, Dal Peraro M. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Nat Commun. 2019 Oct 29;10(1):4918. doi: 10.1038/s41467-019-12690-9.
PubMed ID: 31664022Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Hung Nguyen Q, Tornow M, Tampé R, Howorka S. Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun. 2019 Nov 4;10(1):5018. doi: 10.1038/s41467-019-12639-y.
PubMed ID: 31685824Wang X, Agasid MT, Baker CA, Aspinwall CA. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34463-34470. doi: 10.1021/acsami.9b12342. Epub 2019 Sep 9.
PubMed ID: 31496217Restrepo-Pérez L, Huang G, Bohländer PR, Worp N, Eelkema R, Maglia G, Joo C, Dekker C. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano. 2019 Sep 19. doi: 10.1021/acsnano.9b05156. [Epub ahead of print]
PubMed ID: 31536327Willems K, Ruić D, Biesemans A, Galenkamp NS, Van Dorpe P, Maglia G. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. ACS Nano. 2019 Aug 20. doi: 10.1021/acsnano.8b09137. [Epub ahead of print]
PubMed ID: 31403770Wang H, Kasianowicz JJ, Robertson JWF, Poster DL, Ettedgui J. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters. Eur Phys J E Soft Matter. 2019 Jun 28;42(6):83. doi: 10.1140/epje/i2019-11838-3.
PubMed ID: 31250227Baxter AM, Wittenberg NJ. Excitation of Fluorescent Lipid Probes Accelerates Supported Lipid Bilayer Formation via Photosensitized Lipid Oxidation. Langmuir. 2019 Sep 3;35(35):11542-11549. doi: 10.1021/acs.langmuir.9b01535. Epub 2019 Aug 22.
PubMed ID: 31411482Hui Li, Shaoying Wang, Zhouxiang Ji, Congcong Xu, Lyudmila S. Shlyakhtenko, Peixuan Guo. Construction of RNA nanotubes. August 2019;8:1952-1958.
Megalathan A, Cox BD, Wilkerson PD, Kaur A, Sapkota K, Reiner JE, Dhakal S. Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Res. 2019 Jul 9. pii: gkz565. doi: 10.1093/nar/gkz565. [Epub ahead of print]
PubMed ID: 31287873Su Z, Ho D, Merrill AR, Lipkowski J. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane. Langmuir. 2019 Jun 25;35(25):8452-8459. doi: 10.1021/acs.langmuir.9b01251. Epub 2019 Jun 13.
PubMed ID: 31194562Liu YM, Fang XY, Fang F, Wu ZY. Investigation of hairpin DNA and chelerythrine interaction by a single bio-nanopore sensing interface. Analyst. 2019 Jul 7;144(13):4081-4085. doi: 10.1039/c9an00113a. Epub 2019 Jun 6.
PubMed ID: 31169284Liu L, Fang Z, Zheng X, Xi D. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sens. 2019 May 24;4(5):1323-1328. doi: 10.1021/acssensors.9b00236. Epub 2019 May 10.
PubMed ID: 31050287Tan S, Zhang L, Yu L, Xu L. Free-Standing Lipid Bilayers Based on Nanopore Array and Ion Channel Formation. J Nanosci Nanotechnol. 2019 Nov 1;19(11):7149-7155. doi: 10.1166/jnn.2019.16674.
PubMed ID: 31039869Janilson J. S. Júnior, Thereza A. Soares, Laércio Pol-Fachin, Dijanah C. Machado, Victor H. Rusu, Juliana P. Aguiar, and Cláudio G. Rodrigues. Alpha-hemolysin nanopore allows discrimination of the microcystins variants. (Paper) RSC Adv., 2019, 9, 14683-14691. doi: 10.1039/C8RA10384D
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J. 2019 May 2. doi: 10.1111/febs.14870. [Epub ahead of print]
PubMed ID: 31070654Lee MT, Hung WC, Huang HW. Rhombohedral trap for studying molecular oligomerization in membranes: application to daptomycin. Soft Matter. 2019 May 29;15(21):4326-4333. doi: 10.1039/c9sm00323a.
PubMed ID: 31070654Puthumadathil N, Jayasree P, Santhosh Kumar K, Nampoothiri KM, Bajaj H, Mahendran KR. Detecting the structural assembly pathway of human antimicrobial peptide pores at single-channel level. Biomater Sci. 2019 Jun 5. doi: 10.1039/c9bm00181f. [Epub ahead of print]
PubMed ID: 31165117Vu T, Borgesi J, Soyring J, D"Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Nanoscale. 2019 May 30;11(21):10536-10545. doi: 10.1039/c9nr00502a.
PubMed ID: 31116213Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials. 2019 Sep;214:119222. doi: 10.1016/j.biomaterials.2019.119222. Epub 2019 May 21.
PubMed ID: 31158604Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P. Structure of the human ClC-1 chloride channel. PLoS Biol. 2019 Apr 25;17(4):e3000218. doi: 10.1371/journal.pbio.3000218. eCollection 2019 Apr.
PubMed ID: 31022181Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS Nano. 2019 Apr 23;13(4):4469-4477. doi: 10.1021/acsnano.9b00008. Epub 2019 Apr 3.
PubMed ID: 30925041Noakes MT, Brinkerhoff H, Laszlo AH, Derrington IM, Langford KW, Mount JW, Bowman JL, Baker KS, Doering KM, Tickman BI, Gundlach JH. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat Biotechnol. 2019 Apr 22. doi: 10.1038/s41587-019-0096-0. [Epub ahead of print]
PubMed ID: 31011178Khoury ME, Winterstein T, Weber W, Stein V, Schlaak HF, Thiel G. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. J Membr Biol. 2019 Mar 12. doi: 10.1007/s00232-019-00062-9. [Epub ahead of print]
PubMed ID: 30863900Zhao Y, Liu L, Tu Y, Wu HC. Investigating the effect of mono- and multivalent counterions on the conformation of poly(styrenesulfonic acid) by nanopores. Electrophoresis. 2019 Feb 27. doi: 10.1002/elps.201800539. [Epub ahead of print]
PubMed ID: 30811621Wang J, Fertig N, Ying YL. Real-time monitoring β-lactam/β-lactamase inhibitor (BL/BLI) mixture towards the bacteria porin pathway at single molecule level. Anal Bioanal Chem. 2019 Mar 2. doi: 10.1007/s00216-019-01650-3. [Epub ahead of print]
PubMed ID: 30824965Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.
PubMed ID: 30616836Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J. 2019 Mar 19;116(6):1085-1094. doi: 10.1016/j.bpj.2018.12.024. Epub 2019 Jan 16.
PubMed ID: 30846364Zhang L, Wang K, Klaerke DA, Calloe K, Lowrey L, Pedersen PA, Gourdon P, Gotfryd K. Purification of Functional Human TRP Channels Recombinantly Produced in Yeast. Cells. 2019 Feb 11;8(2). pii: E148. doi: 10.3390/cells8020148.
PubMed ID: 30754715Schönrock M, Thiel G, Laube B. Coupling of a viral K+-channel with a glutamate-binding-domain highlights the modular design of ionotropic glutamate-receptors. Commun Biol. 2019 Feb 22;2:75. doi: 10.1038/s42003-019-0320-y. eCollection 2019.
PubMed ID: 30820470Inada M, Kinoshita M, Sumino A, Oiki S, Matsumori N. A concise method for quantitative analysis of interactions between lipids and membrane proteins. Anal Chim Acta. 2019 Jun 20;1059:103-112. doi: 10.1016/j.aca.2019.01.042. Epub 2019 Feb 1.
PubMed ID: 30876624Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.
PubMed ID: 30783102Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.
PubMed ID: 30702873Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.
PubMed ID: 30783102Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.
PubMed ID: 30702873Dugger ME, Baker CA. Automated formation of black lipid membranes within a microfluidic device via confocal fluorescence feedback-controlled hydrostatic pressure manipulations. Anal Bioanal Chem. 2019 Jan 7. doi: 10.1007/s00216-018-1550-4. [Epub ahead of print]
PubMed ID: 30617393Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf B Biointerfaces. 2019 Jan 8;176:360-370. doi: 10.1016/j.colsurfb.2019.01.020. [Epub ahead of print]
PubMed ID: 30658284Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure. 2019 Feb 5;27(2):268-280.e6. doi: 10.1016/j.str.2018.10.021. Epub 2018 Dec 13.
PubMed ID: 30554842Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.
PubMed ID: 30616836Yang J, Wang Y, Li M, Ying YL, Long YT. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. Langmuir. 2018 Nov 21. doi: 10.1021/acs.langmuir.8b03264. [Epub ahead of print].
PubMed ID: 30462509Chengxiang Zhang, Weiyu Zhao , Cong Bian, Xucheng Hou, Binbin Deng, David W. McComb, Xiaofang Chen, and Yizhou Dong. Antibiotic-Derived Lipid Nanoparticles to Treat Intracellular Staphylococcus aureus. ACS Appl. Bio Mater., Article ASAP
Challita EJ, Freeman EC. Hydrogel Microelectrodes for the Rapid, Reliable, and Repeatable Characterization of Lipid Membranes. Langmuir. 2018 Nov 23. doi: 10.1021/acs.langmuir.8b02867. [Epub ahead of print]
PubMed ID: 30468580Patrick Urban, Stefanie D. Pritzl, David B. Konrad, James A. Frank, Carla Pernpeintner, Christian R. Roeske, Dirk Trauner, and Theobald Lohmueller. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b03241. Publication Date (Web): October 10, 2018
PubMed ID: 30346771Sacconi A, Tadini-Buoninsegni F, Tiribilli B, Margheri G. A Comparative Study of Phosphatidylcholine versus Phosphatidylserine-based Solid Supported Membranes for the Preparation of Liposome-Rich Interfaces. Langmuir. 2018 Sep 14. doi: 10.1021/acs.langmuir.8b02397. [Epub ahead of print]
PubMed ID: 30217106Burden DL, Kim D, Cheng W, Chandler Lawler E, Dreyer DR, Burden LK. Mechanically Enhancing Planar Lipid Bilayers with a Minimal Actin Cortex. Langmuir. 2018 Aug 27. doi: 10.1021/acs.langmuir.8b01847. [Epub ahead of print]
PubMed ID: 30149716Beltramo PJ, Scheidegger L, Vermant J. Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir. 2018 May 14. doi: 10.1021/acs.langmuir.8b00837.
PubMed ID: 29715042Lindsey, H., N.O. Petersen, and S.I. Chan. (1979). Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta 555:147-67. [PubMed]
PubMed ID: 476096Villar, G., A.D. Graham, and H. Bayley. (2013). A tissue-like printed material. Science 340:48-52. [PubMed]
PubMed ID: 23559243Pan, J., X. Cheng, F.A. Heberle, B. Mostofian, N. Kucerka, P. Drazba, and J. Katsaras. (2012). Interactions between Ether Phospholipids and Cholesterol As Determined by Scattering and Molecular Dynamics Simulations. J Phys Chem B [PubMed]
PubMed ID: 23199292Tristram-Nagle, S., Kim, D.J., Akhunzada, N., Kucerka, N., Mathai, J.C., Katsaras, J., Zeidel, M., Nagle, J.F. (2010) Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids.163:630-7. [PubMed]
PubMed ID: 20447383Redwood, W.R., Pfeiffer, F.R., Weisbach, J.A., Thompson, T.E. (1971) Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta.233:1-6. [PubMed]
PubMed ID: 5579131Transition Temperature Of Diphytanoyl Pc
- Certificate of Analysis(Lot No. 850356C-200MG-A-145and 5649CNA145)
- Certificate of Analysis(Lot No. 850356C-25MG-A-145and 5649CJA145)
- Certificate of Analysis(Lot No. 850356C-500MG-A-145and 5649CPA145)
- Certificate of Analysis(Lot No. 850356P-200MG-A-145and 5649PNA145)
- Certificate of Analysis(Lot No. 850356P-25MG-A-145and 5649PJA145)
- Certificate of Analysis(Lot No. 850356P-25MG-B-145and 5649PJB145)
- Certificate of Analysis(Lot No. 850356P-500MG-A-145and 5649PPA145)
- Certificate of Analysis(Lot No. 850356P-25MG-C-145and 5649PJC145)
- Certificate of Analysis(Lot No. 850356P-CONF-A-145and 5649PWA145)
- Certificate of Analysis(Lot No. 850356P-25MG-E-145and 5649PJE145)
- Certificate of Analysis(Lot No. 850356C-25MG-B-145and 5649CJB145)
- Certificate of Analysis(Lot No. 850356C-200MG-B-145and 5649CNB145)
- Certificate of Analysis(Lot No. 850356P-500MG-B-145and 5649PPB145)
- Certificate of Analysis(Lot No. 850356P-200MG-B-145and 5649PNB145)
- Certificate of Analysis(Lot No. 850356P-500MG-C-145and 5649PPC145)
- Certificate of Analysis(Lot No. 850356P-200MG-C-145and 5649PNC145)
- Certificate of Analysis(Lot No. 850356P-25MG-F-145and 5649PJF145)
- Certificate of Analysis(Lot No. 850356P-10G-A-145and 5649PSA145)
- Certificate of Analysis(Lot No. 850356P-5G-A-146and 5649PRA146)
- Certificate of Analysis(Lot No. 850356C-25MG-C-145and 5649CJC145)
- Certificate of Analysis(Lot No. 850356P-500MG-D-145and 5649PPD145)
- Certificate of Analysis(Lot No. 850356P-200MG-D-145and 5649PND145)
- Certificate of Analysis(Lot No. 850356C-200MG-C-145and 5649CNC145)
- Certificate of Analysis(Lot No. 850356P-5MG-A-146and 5649PHA146)
- Certificate of Analysis(Lot No. 850356C-200MG-A-146and 5649CNA146)
- Certificate of Analysis(Lot No. 850356P-500MG-A-146and 5649PPA146)
- Certificate of Analysis(Lot No. 850356C-200MG-B-146and 5649CNB146)
- Certificate of Analysis(Lot No. 850356P-200MG-A-146and 5649PNA146)
- Certificate of Analysis(Lot No. 850356C-25MG-A-146and 5649CJA146)
- Certificate of Analysis(Lot No. 850356P-25MG-A-146and 5649PJA146)
- Certificate of Analysis(Lot No. 850356C-500MG-A-146and 5649CPA146)
- Certificate of Analysis(Lot No. 850356C-200MG-C-146and 5649CNC146)
- Certificate of Analysis(Lot No. 850356C-500MG-B-146and 5649CPB146)
- Certificate of Analysis(Lot No. 850356P-500MG-B-146and 5649PPB146)
- Certificate of Analysis(Lot No. 850356P-25MG-B-146and 5649PJB146)
- Certificate of Analysis(Lot No. 850356C-200MG-D-146and 5649CND146)
- Certificate of Analysis(Lot No. 850356P-25MG-C-146and 5649PJC146)
- Certificate of Analysis(Lot No. 850356C-200MG-E-146and 5649CNE146)
- Certificate of Analysis(Lot No. 850356C-25MG-B-146and 5649CJB146)
- Certificate of Analysis(Lot No. 850356C-25MG-C-146and 5649CJB146)
- Certificate of Analysis(Lot No. 850356C-500MG-C-146and 5649CPC146)
- Certificate of Analysis(Lot No. 850356C-200MG-F-146and 5649CNF146)
- Certificate of Analysis(Lot No. 850356C-25MG-D-146and 5649CJD146)
- Certificate of Analysis(Lot No. 850356P-500MG-G-146and 5649PPG146)
- Certificate of Analysis(Lot No. 850356P-500MG-F-146and 5649PPF146)
- Certificate of Analysis(Lot No. 850356P-25MG-H-146and 5649PJH146)
- Certificate of Analysis(Lot No. 850356P-200MG-E-146and 5649PNE146)
- Certificate of Analysis(Lot No. 850356C-200MG-G-146and 5649CNG146)
- Certificate of Analysis(Lot No. 850356C-25MG-E-146and 5649CJE146)
- Certificate of Analysis(Lot No. 850356P-200MG-F-146and 5649PNF146)
- Certificate of Analysis(Lot No. 850356P-25MG-I-146and 5649PJI146)
- Certificate of Analysis(Lot No. 850356C-25MG-F-146and 5649CJF146)
- Certificate of Analysis(Lot No. 850356C-200MG-H-146and 5649CNH146)
- Certificate of Analysis(Lot No. 850356P-25MG-J-146and 5649PJJ146)
- Certificate of Analysis(Lot No. 850356P-200MG-G-146and 5649PNG146)
- Certificate of Analysis(Lot No. 850356P-500MG-H-146and 5649PPH146)
AvantiPolarLipids公司是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。 AvantiPolarLipids,Inc.,hasalonghistoryof50yearscreatingthehighestpuritylipidsavailable.Ourpassionforhighqualityanduniqueproductsisonlyexceededbyourexcellentreputationinthemarketplace. Althoughweareknownforourlipids,weareMorethanLipids.Weoffersolutionsfortheentireproductcycle…ResearchtoCommercialization. AvantiPolarLipids公司的主要产品和服务包括:(1)ResearchProductsHighestPurityLipidReagents(2)cGMPManufacturingAPI&ContractManufacturing(3)AdjuvantsImmunotherapy&VaccineDevelopment(4)AnalyticalServicesLipidAnalysis(5)LipidomicsMassSpecStandards,Antibodies&LipidToolbox(6)Formulationsliposomes&Nanoparticles(7)EquipmentLiposomeProductionTools(8)CustomServicesSynthesis&Beyond
AvantiPolarLipids是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。
AvantiPolarLipidsInc,是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至百公斤级的磷脂类和甾体类中间体和试剂。主要产品Naturalsphingolipids天然鞘脂类Naturalphospholipids天然磷脂类Naturallipidsbyextraction天然提取脂类Referencestandards相关标准品Syntheticsphingolipids合成鞘脂类--Sphingosines&S-1-P鞘氨醇和鞘氨醇-1-磷酸盐--Ceramides神经酰胺--Sphingomyelins鞘磷脂--Sphingosine&ceramidederivatives鞘氨醇及神经酰胺衍生物--Sphinganine&derivatives鞘氨醇及其衍生物--C17sphingolipids十七碳鞘脂类--C20sphingolipids二十碳鞘脂类--Phytosphingosine&derivatives植物鞘氨醇及其衍生物Syntheticlipids&phospholipids合成脂质与磷脂--PC卵磷脂--PA磷脂酸--PE脑磷脂--PG磷脂酰甘油--PS磷脂酰丝氨酸--PI,PIP2&PIP3磷脂酰肌醇,磷脂酰肌醇-4,5-二磷酸,磷脂酰-3,4,5-三磷酸--CA胆酸--LysoPC溶源性卵磷脂--LysoPA溶源性磷脂酸--LysoPAAnalogues溶源性磷脂酸类似物--Lysobio-PA溶源性双磷脂酸--LysoPE,PG&PS溶源性脑磷脂,磷脂酰甘油和磷脂酰丝氨酸--AlkylPC烷基卵磷脂--Diether&Diphytanoyletherlipids二醚与二植烷醚脂质--PAF血小板活化因子--AcylPAFAnalog酰化血小板活化因子类似物--Brominatedphosphocholines溴代胆碱磷酸--Alkylphosphatederivatives烷基磷酸盐衍生物--Plasmalogen缩醛磷脂--Functionalizedlipids功能性脂类--Biotinylatedlipids生物素酰化脂质--Bioactivelipids生物活性脂类Syntheticphospholipids合成磷酸--AcylcoenzymeA乙酰辅酶A--Metabolicintermediates代谢中间产物--Adhesivelipid粘合脂质--pHsensitivelipids酸度计用脂质Transfectionreagents转染试剂Sterolderivatives甾酮衍生物Lipidblends混合脂质Glycosylatedphospholipids糖化磷脂Fluorinatedphospholipids氟化磷脂Chelators螯合剂Pre-mixedlipidsforbicelleformation构型分析用预混合脂质Diacylglycerols&analogues甘油二酯与类似物Deuteriumlabeledlipids氘标记脂质C13PC碳-13标记卵磷脂DoxylPC自旋标记卵磷脂TempoPCTempo(4-氧-4-羟-四甲基呱啶氮氧自由基)标记卵磷脂Fluoresecentsphingolipids荧光标记鞘脂类--Omegalabeled欧米加标记物--Fattyacidlabeled脂肪酸标记物Fluoresecentcholesterol荧光标记胆固醇Fluoresecentphospholipids荧光标记磷脂--Fattyacidlabeled脂肪酸标记物--Headgrouplabeled首基标记物Polymerizablelipids聚合脂质Poly(Ethyleneglycol)-lipidconjugates共轭聚脂质FunctionalizedPEGlipids功能PEG脂质Analyticalservices分析服务Drugdeliveryproduct药物运送载体Bulklipidsforpharmaceuticalproduction工业级脂质Equipment设备
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
脂质的生物学功能有1、脂肪氧化分解释放能量
2、复合脂质和衍生脂质是构成细胞的成分
3、促进脂性维生素的吸收
4、脂肪防震和隔热保温作用
5、脂肪的氧化利用具有降低蛋白质和糖消耗的作用
如磷脂含P,维生素D含N.脂肪只含C、H、O三种元素.
向左转|向右转
1.体内储存和提供能量(体内1克脂肪产生的能量大约9千卡)
2.维持体温正常(皮下脂肪还可以起到隔热保温作用)
3.保护作用(脂肪组织在体内对器官有支撑和衬垫作用,保护内部器官免受外力伤害)
4.内分泌作用(由脂肪分泌的银子有瘦素、肿瘤坏死因子、白细胞介素-6、脂联素及抵抗素等参与机体代谢、免疫、生长发育等生理过程)
5.帮助机体更有效低利用碳水化合物和节约蛋白质作用(节约蛋白质作用)
6.机体重要的构成成分(比如细胞膜脂质双分子层)
食物中的脂肪营功能:
除给人体提供能量和脂肪合成材料外,还有营养学功能:增加饱腹感;改善食物感官性状;提供脂溶性维生素。此外为人体提供必需脂肪酸。
缺乏时的症状:
一般情况不会有单纯的脂肪缺乏,除非像非洲难民似的遭遇饥荒(其实是很多食物的匮乏导致的结果)。脂肪缺乏表现为消瘦,怕冷,免疫力低下,生长发育缓慢等。
必需脂肪酸缺乏症状供参考:生长迟缓、生殖障碍、皮肤损伤(出现皮疹等)以及肾脏、肝脏、神经和视觉方面多种疾病。
脂肪的来源:动物的脂肪组织和肉类以及植物的种子。
有些是类固醇化合物(甾体激素),有些事脂肪酸衍生物
类固醇激素例如:肾上腺皮质激素、性激素等。
脂肪酸衍生物例如:前列腺素等。
1、认领翻译的战友请跟帖注明“认领本文翻译,48小时内未完成,请其他战友认领!”
2、请根据自己专业背景选择认领,如使用翻译软件翻译,被发现者扣分1-2分
3、经常认领而不能及时提供优质稿件者将被列入黑名单,取消认领资格,请大家注意!
4、翻译时请参照版规:点击查看
5、在首位认领战友未超过规定时间的其他任何认领属违规认领,将不会给予蚁豆或加分!
6、翻译完成后加分(或蚁豆)的时限为三日,请耐心等待,若超过时限未加者可进行申诉:点击进入
7、本文题目仅供译者参考,篇幅较长者可申请适当延时
8、翻译前请查一下有无重复帖
9、为保证翻译质量,每人每天最多只能认领两篇
原文链接:http://www.medpagetoday.com/Rheumatology/Arthritis/42192
ErosiveHandOALinkedtoLipids
Erosiveosteoarthritis(OA)ofthehandisasevereformofrADIographichandOA,ratherthanadistinctclinicalentity,andmaybedrivenbythepresenceofmetabolicabnormalities,researchersreported.
ThepatternofjointinvolvementinerosiveOAwassimilartothatseeninseverenon-erosivedisease,particularlyforsymmetry,withanadjustedoddsratioof6.5(95%CI3-14.1)forinvolvementofthesamejointintheoppositehand,accordingtoMichelleMarshall,PhD,ofKeeleUniversityinStaffordshire,England,andcolleagues.
ButindividualswitherosivehandOAhadmorethantwicetheriskofmetabolicsyndrome(OR2.7,95%CI1-7.1)andmorethanfourtimestheriskofdyslipidemia(OR4.7,95%CI2.1-10.6)comparedwithpatientswhohadseverenon-erosiveOA,theresearchersreportedonlineinAnnalsoftheRheumaticDiseases.
ErosivehandOAdiffersfromnon-erosivediseaseinseveralways.Forinstance,theonsetofsymptomssuchasswelling,stiffness,andpaintendstobeabrupt,andradiographsreveal"gull-wing"or"saw-tooth"deformitiesandcollapseofthesubchondralbone.
Followingapparentwideningofthejointspace,remodelingoccurs,resultingintheappearanceoflargeosteophytesandanirregularsubchondralplate.
Andoverall,worseclinicalandradiographicoutcomes--alongwithsystemicriskfactors--havebeenreportedforerosiveOA.
ButthecauseandpathogenicprocessesassociatedwitherosiveOAhavenotbeenfullyestablished,andtheEuropeanLeagueAgainstRheumatismhassuggestedthaterosivediseasemaybeasubsetofgeneralizedhandOA.
TodeterminewhethererosivehandOAactuallyisaseparateentityorpartofacontinuumofseverityandtoidentifypotentialriskfactors,MarshallandcolleaguesrecruitedpatientsfromaclinicalassessmentstudyofhandOAandalsofromastudyofkneeOAtoprovidealarger,enrichedsample.
Allparticipantsreportedhandpainandstiffnessforatleast"afew"dayswithinthepastmonth.
X-raysofthehandswerescoredaccordingtotheKellgrenandLawrence(KL)system,andthepresenceoferosivechangeswasevaluatedaccordingtotheVerbruggen-Veysprogressionscale.
Atotalof1,167patientsand8,608handjointswereincludedintheanalysis.
OntheKLgradingscale,1,754jointsweregrades2orhigher,indicatingpossIBLeordefiniteosteophytesandnarrowingofthejointspace.
Moderate-to-severeKLscoresof3orhigherwerefoundin425joints,indicatingthepresenceofmultipleosteophytes,jointspacenarrowing,sclerosis,andpossiblebonedeformities.
Severescoresof4,withlargeosteophytes,markedjointspacenarrowing,severesclerosis,anddefinitebonedeformitieswerefoundin112joints.
Erosivediseasewasidentifiedin207jointsin80patients.
Theseconddistalinterphalangealjointwasmostoftenaffected,andsignificantassociationswerefoundfortheoverallrankedorderofinvolvedjointsinbotherosiveandnon-erosiveOA(r>0.95).
Aswithsymmetry,thepatternofinvolvementacrossthejointsofthesamehandandthesamefingerwassimilarforbotherosiveandnon-erosivedisease.
Patientswitherosiveandnon-erosivediseaseweresimilarinmanycharacteristics,includingage,sex,thepresenceofkneeOA,afamilyhistoryofarthritis,andbodymassindex.Themaindifferencewasinthepresenceofdyslipidemiaandmetabolicsyndrome.
Amongpatientswithnon-erosiveKL3,atotalof6.2%hadabnormallevelsofcholesterol,asdid8.8%ofthosewithnon-erosiveKL4.
Incontrast,21.2%ofthosewitherosivediseasehadlipidabnormalities.
AndforpatientswithKL3and4,ratesofmetabolicsyndromewere4.1%and2.9%,respectively,whiletheratewas11.2%forthosewitherosivedisease.
Thepatternsofinvolvementinthehandjointssuggestthatthereare"strongsimilarities"betweenerosiveOAandmoderate-to-severenon-erosiveOA,andmayrepresentanevolutionmediatedthroughmetabolicpathways,theresearchersexplained.
"Theexactmechanismisnotyetknownbutosteoarthritisisbelievedtosharesimilarbiochemicalandinflammatorypathwaystometabolicdisorders,anddyslipidemiamayalterlipidmetabolisminanumberofjointtissues,"theywrote.
Alimitationofthestudywastherelativelysmallnumberofpatientswitherosivedisease.
脂类,由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。
脂肪:存在于人体和动物的皮下组织及植物体中,是生物体的组成部分和储能物质。
脂类所指代的一类物质较脂肪更广。而酯类则是从化学角度来看物质世界,有不少是化工原料。有些酯类是脂肪的构成成分。
如上所述,脂类包括脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、硝氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。包括单纯脂类、复合酯类及衍生脂质。
脂肪是指人体或动物体内的、由一分子甘油和三分子脂肪酸结合而成的甘油三酯。
酯类是指酸(羧酸或无机含氧酸)与醇起反应生成的一类有机化合物。低分子量酯是无色、易挥发的芳香液体,如:如乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3等;高级饱和脂肪酸单酯常为无色无味的固体,高级脂肪酸与高级脂肪醇形成的酯为蜡状固体。所以,酯类与脂类不可替代使用。
后来加PEG沉淀效果很好,上清夜很清,但是不知道会不会对后期测效价,纯化等有影响。
有没有别的简便方法可以去除脂类?
哪位高手指教一下,感激不尽。

