
For oocyte microinjections and applications in the nanoliter range
- Microprocessor-controlled nanoinjector
- Direct piston displacement in capillary glass
- MICRO2T SMARTouch™ controller
- Optional foot switch
See a recent testimonial from a customer using Nanoliter 2010 with Micro2T
See the current Data Sheet.
Benefits
- No syringes required
- Graphical representation of volume status
- Automatically calculated injections based on pipette volume
- Intuitive touchscreen interface
- Precise control over volumes and injection rates
Applications
- Oocyte microinjection
- Neo-cortex injections
WPI’s microprocessor-controlled Nanoliter 2010 uses direct piston displacement. By either pushing the injection button on the control box or pressing on the optional foot switch, a discrete volume will be injected. Maximum fluid ejection is 4.5 µL. Each unit comes with a vial of capillary glass for pulling 10 µm micropipettes. Glass is 1.14mm O.D. (nominal) and 0.5 mm I.D.
The following parts are included with the NanoliterInjector with SMARTouch Controller:
- 500778 Nanoliter Microinjector Universal Adapter
- (1) Vial 3.5" capillaries
- Replacement “O” rings
- (1) Allen wrench
- (1) MicroFil™ MF34G backfilling needle
- (2) Sample µTip™ pre-pulled micropipettes.
- SMARTouch™ Controller (Micro2T)
- Nanoliter 2010 cable adaptor for SMARTouch™
Already own a unit with the standard controller or a Micro4 digital controller? Now you can upgrade to touchscreen control with the new SMARTouch™ controller.
SMARTouch™ Controller

The MICRO2T, a high resolution SMARTouch™ touch screen controller, provides an “intelligent” and easy-to-use interface to operate one or two Nanoliter Injectors independently or synchronously.
The control screen graphically displays the delivered or remaining volume in your Nanoliter 2010 Injector, along with pertinent injection information (the grouped status, target volume for dispensing, a volume counter, the dispensing rate, the infuse/withdraw mode, the delivered volume and the time the microinjectionpump has been running). From this screen, you can run the microinjector(s) manually or automatically, change the direction of the microinjectoror access the configuration screen.

The microinjectionpump display area shows vital information for each pump attached to the controller.

The Configuration screen allows you to set the limits of travel and define parameters for a selected nanoliter injector.
With the touch of a button on the Command screen you can access all the configuration parameters. Set the target volume and delivery rate, set the mode (Motor Drive), select nL/min. or nL/sec. for the delivery rate, and group or ungroup the microinjectionpumps.
An optional footswitch can be plugged into a connector on the rear of the controller for “hands free” start/stop operation. A USB port on the rear of the controller can be used to connect it to a computer for remote control.
Additional Information
Nanoliter 2010 Troubleshooting Tip
Nanoliter 2010 Instruction Manual
MICRO2T SMARTouch Controller Instruction Manual (for use with the UMP3 and Nanoliter2010)
FAQ for Nanoliter Injector with SMARTouch Controller
FAQ:
My Nanoliter with SMARTouch Controller has liquid leaking out or I can see bubbles forming inside the pipette. What can cause this and what action can I take to correct the problem?
Answer:
1) Easy to fix, as it is probably the seal rings. Check to make sure the seal rings are assembled in the correct sequence.
2) The plunger seal has a conical shaped hole in the center. The seal should be installed with the larger end of the hole pushed onto the plunger first. This means the smaller end of the hole is facing toward the tip of the plunger. This is shown graphically in the lower diagram below. Pay special attention to the notes in red. If the plunger seal slides off easily by gravity when the Nanoliter Injector is held vertically pointing downward, the seal hole is too large and it will leak. Replace the seal.
The plunger seal should not slide off the plunger shaft under gravity when tested by holding the nanoliter injector vertically with the tip pointing downward (with no other seals installed). There should be some friction when pushing the plunger seal onto the plunger and it should grip the plunger slightly. It should not be loose.
3) The orientation of the plastic spacer and large glass seal (reddish color with large hole for capillary glass) must be oriented correctly as shown. The shank end of the capillary must be correctly seated into the recess in the plastic spacer.

4) The seals should and capillary glass should be clean. If the seals are oily, they are more likely to leak. Use isopropyl alcohol to clean the seals, and if necessary immerse them in it to get the oil out of the hole.
5) Tighten the cap securely.
| NANOLITER 2010 SPECIFICATIONS | |
| REMOTE CONTROL | Yes |
| GLASS OD | 1.14 mm |
| GLASS ID | 0.5 mm |
| LINEAR TRAVEL PER FULL STEP | 12.7 µm/step |
| INJECTION SPEED | |
| Slowest | 1.617 nL/min |
| Fastest* | 644 nL/sec* |
| FILL SPEED | |
| Slow | 23 nL/sec |
| Fast | 46 nL/sec |
| SMALLEST VOLUME | 0.1 nL |
| LARGEST SINGLE STEP VOLUME | 4527 nL |
| SHIPPING WEIGHT | 3 lb. (1.1 kg) |
*Ejection rate is limited by pipette tip opening size. Controller injection rate should not be set to exceed pipette capacity
Amir, D., Yakir, E., & Bohbot, J. D. (2019). Indolergic receptors of the elephant mosquito Toxorhynchites amboinensis. BioRxiv, 513044. https://doi.org/10.1101/513044
Li, R., Weng, J., Wang, X., Meng, Q., Wang, Y., & Sun, J. (2019). Bursicon homodimers induce innate immune by activating the expression of anti-microbial peptide genes in the shrimp Neocaridina heteropoda. Fish & Shellfish Immunology, 84, 906–911. https://doi.org/10.1016/J.FSI.2018.10.080
Sato, T. R., & Svoboda, K. (n.d.). The Functional Properties of Barrel Cortex Neurons Projecting to the Primary Motor Cortex. http://doi.org/10.1523/JNEUROSCI.3774-09.2010
Plautz, C. Z., Williams, H. C., & Grainger, R. M. (2016). Functional Cloning Using a <em>Xenopus</em> Oocyte Expression System. Journal of Visualized Experiments, (107), e53518–e53518. http://doi.org/10.3791/53518
Saha-Shah, A., Weber, A. E., Karty, J. A., Ray, S. J., Hieftje, G. M., & Baker, L. A. (2015). Nanopipettes: probes for local sample analysis. Chem. Sci., 6(6), 3334–3341. http://doi.org/10.1039/C5SC00668F
Park, D.-Y., Lee, J., Park, I., Choi, D., Lee, S., Song, S., … Koh, G. Y. (2014). Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. The Journal of Clinical Investigation, 124(9), 3960–74. http://doi.org/10.1172/JCI75392
Eom, K., Kim, J., Choi, J. M., Kang, T., Chang, J. W., Byun, K. M., … Kim, S. J. (2014). Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small (Weinheim an Der Bergstrasse, Germany), 10(19), 3853–7. http://doi.org/10.1002/smll.201400599
Bawin, T., Boukraa, S., Seye, F., Raharimalala, F. N., Zimmer, J. Y., Delvigne, F., & Francis, F. (2014). Using micro-injection technique to assess fungal toxicity in mosquito control. Communications in Agricultural and Applied Biological Sciences, 79(1), 181–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25864335
Rösch, S., Johnen, S., Mataruga, A., Müller, F., Pfarrer, C., Walter, P., … S, N. (2014). Selective Photoreceptor Degeneration by Intravitreal Injection of N-Methyl-N-Nitrosourea. Investigative Opthalmology & Visual Science, 55(3), 1711. http://doi.org/10.1167/iovs.13-13242
Chen, X.-G., Wang, Y.-H., Wen, C.-C., & Chen, Y.-H. (2014). Overdose of D-serine Induces Movement Disorder and Neuromuscular Changes of Zebrafish Larvae. Journal of Toxicologic Pathology, 27(1), 19–24. http://doi.org/10.1293/tox.2013-0032
Tyan, L., Chamberland, S., Magnin, E., Camiré, O., Francavilla, R., David, L. S., … Topolnik, L. (2014). Dendritic Inhibition Provided by Interneuron-Specific Cells Controls the Firing Rate and Timing of the Hippocampal Feedback Inhibitory Circuitry. Journal of Neuroscience, 34(13).
Liu, Y., Keefe, K., Tang, X., Lin, S., & Smith, G. M. (2014). Use of Self-Complementary Adeno-Associated Virus Serotype 2 as a Tracer for Labeling Axons: Implications for Axon Regeneration. PLoS ONE, 9(2), e87447. http://doi.org/10.1371/journal.pone.0087447
Fukuyo, Y., Nakamura, T., Bubenshchikova, E., Powell, R., Tsuji, T., Janknecht, R., & Obara, T. (2014). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Reports, 9(2), 457–465. Retrieved from http://www.spandidos-publications.com/mmr/9/2/457/abstract
Mellott, J. G., Foster, N. L., Ohl, A. P., & Schofield, B. R. (2014). Excitatory and inhibitory projections in parallel pathways from the inferior colliculus to the auditory thalamus. Frontiers in Neuroanatomy, 8, 124. http://doi.org/10.3389/fnana.2014.00124
Ichimura, K., Powell, R., Nakamura, T., Kurihara, H., Sakai, T., & Obara, T. (2013). Podocalyxin regulates pronephric glomerular development in zebrafish. Physiological Reports, 1(3). http://doi.org/10.1002/phy2.74
Aschauer, D. F., Kreuz, S., & Rumpel, S. (2013). Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PloS One, 8(9), e76310. http://doi.org/10.1371/journal.pone.0076310
Obara, T. (2013). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Reports. http://doi.org/10.3892/mmr.2013.1844
D’hondt, C., Himpens, B., & Bultynck, G. (2013). Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells. Journal of Visualized Experiments, (77), e50443–e50443. http://doi.org/10.3791/50443
Ohana, E., Shcheynikov, N., Moe, O. W., & Muallem, S. (2013). SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. Journal of the American Society of Nephrology : JASN, 24(10), 1617–26. http://doi.org/10.1681/ASN.2013010080
Socha, M. J., & Segal, S. S. (2013). Isolation of microvascular endothelial tubes from mouse resistance arteries. Journal of Visualized Experiments : JoVE, (81), e50759. http://doi.org/10.3791/50759
Jørgensen, S. T., Eriksen, H. N., Dausell, J., Jespersen, T., Lambert, I. H., & Hoffmann, E. K. (2013). Double mutation at the putative protein kinase C phosphorylation sites Thr151 plus Thr323 in the mouse leukotrieneD4 receptor eliminates homologous desensitization. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 31(2–3), 366–78. http://doi.org/10.1159/000343374
Khlghatyan, J., & Saghatelyan, A. (2012). Time-lapse Imaging of Neuroblast Migration in Acute Slices of the Adult Mouse Forebrain. Journal of Visualized Experiments, (67), e4061–e4061. http://doi.org/10.3791/4061
Artegiani, B., Lange, C., & Calegari, F. (2012). Expansion of Embryonic and Adult Neural Stem Cells by <em>In Utero</em> Electroporation or Viral Stereotaxic Injection. Journal of Visualized Experiments, (68), e4093–e4093. http://doi.org/10.3791/4093
Guo, Q., Jin, S., Wang, X.-L., Wang, R., Xiao, L., He, R., & Wu, Y. (2011). Hydrogen sulfide in the rostral ventrolateral medulla inhibits sympathetic vasomotor tone through ATP-sensitive K+ channels. The Journal of Pharmacology and Experimental Therapeutics, 338(2), 458–65. http://doi.org/10.1124/jpet.111.180711
Chiang, C.-L., Chen, S.-S. A., Lee, S. J., Tsao, K.-C., Chu, P.-L., Wen, C.-H., … Lee, H. (2011). Lysophosphatidic acid induces erythropoiesis through activating lysophosphatidic acid receptor 3. Stem Cells (Dayton, Ohio), 29(11), 1763–73. http://doi.org/10.1002/stem.733
Yu, H., Fischer, G., Jia, G., Reiser, J., Park, F., & Hogan, Q. H. (2011). Lentiviral gene transfer into the dorsal root ganglion of adult rats. Molecular Pain, 7(1), 63. http://doi.org/10.1186/1744-8069-7-63
Predel, R., Neupert, S., Garczynski, S. F., Crim, J. W., Brown, M. R., Russell, W. K., … Nachman, R. J. (2010). Neuropeptidomics of the mosquito Aedes aegypti. Journal of Proteome Research, 9(4), 2006–15. http://doi.org/10.1021/pr901187p
Chen, J., Joon Lee, H., Jakovcevski, I., Shah, R., Bhagat, N., Loers, G., … Schachner, M. (2010). The Extracellular Matrix Glycoprotein Tenascin-C Is Beneficial for Spinal Cord Regeneration. Molecular Therapy, 18(10), 1769–1777. http://doi.org/10.1038/mt.2010.133
Czirják, G., & Enyedi, P. (2010). TRESK background K(+) channel is inhibited by phosphorylation via two distinct pathways. The Journal of Biological Chemistry, 285(19), 14549–57. http://doi.org/10.1074/jbc.M110.102020
Liu, C., Pitts, R. J., Bohbot, J. D., Jones, P. L., Wang, G., & Zwiebel, L. J. (2010). Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biology, 8(8), e1000467. http://doi.org/10.1371/journal.pbio.1000467
Goldberg, M. W., Huttenlauch, I., Hutchison, C. J., & Stick, R. (2008). Filaments made from A- and B-type lamins differ in structure and organization. Journal of Cell Science, 121(Pt 2), 215–25. http://doi.org/10.1242/jcs.022020
Li, B., Predel, R., Neupert, S., Hauser, F., Tanaka, Y., Cazzamali, G., … Park, Y. (2008). Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Research, 18(1), 113–22. http://doi.org/10.1101/gr.6714008
Adapter for Nanoliter 201040239For pricing, Customers outside of the US and Canada, please contact your distributor.
Nanoliter 2010 Injector Head504127For pricing, Customers outside of the US and Canada, please contact your distributor.
Optional Foot Switch for Micro2T, Micro-ePore™, DMF100013142For pricing, Customers outside of the US and Canada, please contact your distributor.
Micropipette Tips for Nanoliter 2010TIP10XV119For pricing, Customers outside of the US and Canada, please contact your distributor.
Glass Capillaries for Nanoliter 2010, fire polished 2504949For pricing, Customers outside of the US and Canada, please contact your distributor.
Glass Capillaries for Nanoliter 2010, fire polished504950For pricing, Customers outside of the US and Canada, please contact your distributor.
Stage Micrometer, 3 Ranges504606For pricing, Customers outside of the US and Canada, please contact your distributor.
Front Filling a Micropipette with the WPI Nanoliter2010 Injector
Nanoliter2010 Replace Gasket
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
解旋酶:在DNA复制、转录时,作用于DNA双链,将双链DNA解开形成单链。
RNA聚合酶:在转录过程中,作用于游离的核糖核苷酸,将它们连接形成mRNA链
B、酶大部分是蛋白质、少量是RNA,故某种酶的基本组成单位是氨基酸或核糖核苷酸,B错误;
C、内分泌细胞能产生激素,活的细胞能产生酶,故能产生激素的细胞就能产生酶,C正确;
D、酶通常是蛋白质,蛋白质在低温条件下更加稳定,利于保存,而且低温不会使酶失活,因此在最适温度保存没有意义,D错误.
相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。
不同点
1、作用底物不同。RNA聚合酶底物是NTP;DNA聚合酶底物是dNTP。
2、RNA聚合酶作用不需要引物,而DNA聚合酶作用需要引物。
3、RNA聚合酶本身具有一定的解旋功能,而DNA聚合酶没有,当需要解开双链的时候要解旋酶和拓扑异构酶的帮助。
4、RNA聚合酶只具有5‘到3’端的聚合酶活性,而DNA聚合酶不仅有5‘到3’端的聚合酶活性,还具有3‘到5’端的外切酶活性。保证DNA复制时候校对,所以复制的忠实性高于转录的。
5、RNA聚合酶通常作用于转录过程;DNA聚合酶通常作用于DNA复制过程
但是也有以RNA为模板的DNA聚合酶和RNA聚合酶 (也就是反转录酶和RNA依赖的RNA聚合酶),它们的结合位点在RNA上.
也就是说,模版是谁,结合位点就在谁上。
2.结合位点就是启动合成DNA或者RNA的碱基序列,如RNA聚合酶结合位点是转录起始位点,是一段特殊的位于编码基因上游的DNA序列.这段DNA序列可以结合RNA聚合酶,从而起始转录过程.经典的RNA聚合酶结合位点是TATA box.
TATA box是编码序列前的4个碱基.在大多数生物的基因前面都有TATA着4个碱基序列的存在,它就是一个RNA聚合酶结合位点.
不同点:
1、作用底物不同。RNA聚合酶底物是NTP;DNA聚合酶底物是dNTP。
2、RNA聚合酶作用不需要引物,而DNA聚合酶作用需要引物。
3、RNA聚合酶本身具有一定的解旋功能,而DNA聚合酶没有,当需要解开双链的时候要解旋酶和拓扑异构酶的帮助。
4、RNA聚合酶只具有5‘到3’端的聚合酶活性,而DNA聚合酶不仅有5‘到3’端的聚合酶活性,还具有3‘到5’端的外切酶活性。保证DNA复制时候校对,所以复制的忠实性高于转录的。
5、RNA聚合酶通常作用于转录过程;DNA聚合酶通常作用于DNA复制过程。
可分为以下几个类群:(1)依赖DNA的DNA聚合酶;(2)依赖RNA的DNA聚合酶;(3)依赖DNA的RNA聚合酶;(4)依赖RNA的RNA聚合酶。前两者是DNA聚合酶,它使DNA复制链按模板顺序延长。如在原核生物中仅就大肠杆菌中已被发现的就有三种(分别简称为PolⅠ,PolⅡ和PolⅢ等);DNA聚合酶只能在有引物的基础上,即在DNA或RNA引物的3′-OH延伸,这DNA的合成方向记为5′→3′。换言之DNA聚合酶催化反应除底物(αNTP)外,还需要Mg2+ 、模板DNA和引物,迄今细胞内尚无发现可从单体起始DNA的合成。同样,上述(3)和(4)是催化RNA生物合成反应中最主要的RNA合成酶,它们以四种三磷酸核糖核苷(NTP)为底物,并需有DNA模板以及Mn2 及Mg2 的存在下,在前一个核苷酸3′-OH与下一个核苷酸的5′-P聚合形成3′,5′-磷酸二酯键,其新生链的方向也是5′→3′。RNA聚合酶也大量存在于原核和真核生物的细胞中。如大肠杆菌RNA聚合酶分子量4.8×105,由5条多肽链组成,分别命名为α,α,β,β′,和γ,全酶可用α2ββ′λ表示。真核生物RNA聚合酶分子大于5×105,由10~12个大小不等亚基组成。聚合酶除作为自然界生命活动中不可缺少的组分外,在实验室中大多用作生命科学研究的工具酶类之一。
最近,我看了很多这方面的资料,但是我对这个方面不是很了解,所以现在搞得头昏眼花的,不知道该选什么酶和载体,希望大家多多帮忙
在此十分感谢
DNA连接酶作用于基因工程,用于连接两个DNA片段间的磷酸二酯键。
DNA聚合酶和DNA连接酶作用的位点都是3'5'磷酸二酯键;但DNA连接酶是作用在游离的DNA片段间,使其连接成为一条完整的DNA链,而DNA聚合酶则是将游离的脱氧核糖核苷酸连接成DNA片段。

