Mostproteinsfoldintoglobulardomains.Proteinfoldingisdrivenlargelybythehydrophobiceffect,whichseekstominimizecontactofthepolypeptidewithsolvent.Mostproteinsfoldintoglobulardomains,whichhaveaminimalsurfacearea.Peptidesfrom10to30kDatypicallyfoldintoasingledomain.Peptideslargerthan50kDatypicallyformtwoormoredomainsthatareindependentlyfolded.However,someproteinsarehighlyelongated,eitherasastringofsmallglobulardomainsorstABIlizedbyspecializedstructuressuchascoiledcoilsorthecollagentriplehelix.Theultimatestructuralunderstandingofaproteincomesfromanatomic-levelstructureobtainedbyX-raycrystallographyornuclearmagneticresonance.However,structuralinformationatthenanometerlevelisfrequentlyinvaluable.Hydrodynamics,inparticularsedimentationandgelfiltration,canprovidethisstructuralinformation,anditbecomesevenmorepowerfulwhencombinedwithelectronmicroscopy(EM).
Oneguidingprincipleenormouslysimplifiestheanalysisofproteinstructure.Theinteriorofproteinsubunitsanddomainsconsistsofcloselypackedatoms(1).Therearenosubstantialholesandalmostnowatermoleculesintheproteininterior.Asaconsequenceofthis,proteinsarerigidstructures,withaYoung’smodulussimilartothatofPlexiglas(2).EngineerssometimescategorizeBIOLOGyasthescienceof“softwetmaterials”.Thisistrueofsomehydratedgels,butproteinsarebetterthoughtofasharddryplastic.Thisisobviouslyimportantforallofbiology,tohavearigidmaterialwithwhichtoconstructthemachineryoflife.Asecondconsequenceoftheclosepackedinteriorofproteinsisthatallproteinshaveapproximatelythesamedensity,about1.37g/cm3.Formostofthefollowing,wewillusethepartialspecificvolume,v2,whichisthereciprocalofthedensity.v2variesfrom0.70to0.76fordifferentproteins,andthereisaliteratureoncalculatingordeterminingthevalueexperimentally.Forthepresentdiscussion,wewillignorethesevariationsandassumetheaveragev2 = 0.73cm3/g.
| (2.1) | 
Theinverserelationshipisalsofrequentlyuseful:M(Da) = 825V(nm3).
| (2.2) | 
ProteinM(kDa)  | 5  | 10  | 20  | 50  | 100  | 200  | 500  | 
|---|---|---|---|---|---|---|---|
Rmin(nm)  | 1.1  | 1.42  | 1.78  | 2.4  | 3.05  | 3.84  | 5.21  | 
| (3.1) | 
Concentration  | 1M  | 1mM  | 1μM  | 1nM  | |||
|---|---|---|---|---|---|---|---|
Distancebetweenmolecules(nm)  | 1.18  | 11.8  | 118  | 1,180  | |||
| (4.1) | 
MisthemassoftheproteinmoleculeinDalton;NoisAvogadro’snumber,6.023 × 1023;v2isthepartialspecificvolumeoftheprotein;typicalvalueis0.73cm3/g;ρisthedensityofsolvent(1.0g/cm3forH2O);ηistheviscosityofthesolvent(0.01g/cm−sforH2O).
Acriticalfactorintheequationisthefrictionalcoefficient,f(dimensionsgrampersecond)whichdependsonboththesizeandshapeoftheprotein.Foragivenmassofprotein(orgivenvolume),fwillincreaseastheproteinbecomeselongatedorasymmetrical(fcanbereplacedbyanequivalentexpressioncontainingRs,theStokesradius,tobediscussedlater).Shasthedimensionsoftime(seconds).Fortypicalproteinmolecules,Sisintherangeof2–20 × 10−13s,andthevalue10−13sisdesignatedaSvedbergunit,S.Thus,typicalproteinshavesedimentationcoefficientsof2–20S.
Fromtheabovedefinitionofparameters,itisclearthatSdependsonthesolventandtemperature.Inclassicalstudies,thesolvent-dependentfactorswereeliminatedandthesedimentationcoefficientwasextrapolatedtothevalueitwouldhaveat20°Cinwater(forwhichρandηaregivenabove).ThisisreferredtoasS20,w.Inthepresenttreatment,wewillbereferringmostlytostandardproteinsthathavealreadybeencharacterized,orunknownonesthatwillbereferencedtotheseingradientsedimentation,soouruseofSwillalwaysmeanS20,w.
| (4.2) | 
Wehavenowdesignatedfminastheminimalfrictionalcoefficientforaproteinofagivenmass,whichwouldobtainiftheproteinwereasmoothsphereofradiusRmin.
Theactualfofaproteinwillalwaysbelargerthanfminbecauseoftwothings.First,theshapeoftheproteinnormallydeviatesfromspherical,tobeellipsoidalorelongated;closelyrelatedtothisisthefactthatthesurfaceoftheproteinisnotsmoothbutratherroughonthescaleofthewatermoleculesitistravelingthrough.Second,allproteinsaresurroundedbyashellofboundwater,one–twomoleculesthick,whichispartiallyimmobilizedorfrozenbycontactwiththeprotein.Thiswaterofhydrationincreasestheeffectivesizeoftheproteinandthusincreasesf.
Ifonecoulddeterminetheamountofwaterofhydrationandfactorthisout,therewouldbehopethattheremainingexcessoffoverfmincouldbeinterpretedintermsofshape.Algorithmshavebeendevisedforestimatingtheamountofboundwaterfromtheaminoacidsequence,butthesegenerallydonotdistinguishbetweenburiedresidues,whichhavenoboundwaterandsurfaceresidueswhichbindwater.Someattemptshavebeenmadetobasetheestimateofboundwaterbasedonpolarresidues,whicharemostlyexposedonthesurface.A0.3-gH2O/gproteinisatypicalestimate,butinfact,thiskindofguessisalmostuselessforanalyzingf.
Intheolderdays,whentherewassomeconfidenceintheseestimatesofboundwater,physicalchemistscalculatedavaluecalledfo,whichwasthefrictionalcoefficientforaspherethatwouldcontainthegivenprotein,butenlargedbytheestimatedshellofwater(otherauthorsusefotodesignatewhatwetermfmin(3,4);werecommendusingfmintoavoidambiguity).Themeasuredfforproteinswasalmostalwayslargerthanfo,suggestingthattheproteinwasasymmetricalorelongated.Averypopularanalysiswastomodeltheproteinasanellipsoidofrevolutionandcalculatetheaxialratiofromf/fo,usinganequationfirstdevelopedbyPerrin.Thisapproachisdetailedinmostclassicaltextsofphysicalbiochemistry.Infact,thePerrinanalysisalwaysoverestimatestheasymmetryoftheproteins,typicallybyafactoroftwotofive.Itshouldnotbeusedforproteins.
Theproblemisillustratedbyanearlycollaborativestudyofphosphofructokinase,inwhichthelaboratoryofJamesLeedidhydrodynamicsandourlaboratorydidEM(5).WefoundbyEMthatthetetramericparticleswereapproximatelycylinders,9nmindiameterand14nmlong.Theshapewasthereforelikearugbyball,withanaxialratioof1.5foraprolateellipsoidofrevolution.TheLeegroupmeasuredthemolecularweightandsedimentationcoefficient,determinedfandestimatedwaterofhydrationandfo.TheythenusedthePerrinequationtocalculatetheaxialratio.Theratiowasfive,whichwouldsuggestthattheproteinhadtheshapeofahotdog.TheEMstructure(whichwaslaterconfirmedbyX-raycrystallography)showsthatthePerrinequationoverestimatedtheaxialratiobyafactorof3.
Telleretal.(6)summarizedthesituation:“Frequentlytheaxialratiosresultingfromsuchtreatmentareabsurdinlightofthepresentknowledgeofproteinstructure.”TheyexplainedthatthemajorproblemwiththePerrinequationisthatittreatstheproteinasasmoothellipsoid,wheninfactthesurfaceoftheproteinisquiterough.Telleretal.wentontoshowhowthefrictionalcoefficientcanactuallybederivedfromtheknownatomicstructureoftheprotein,bymodelingthesurfaceoftheproteinasashellofsmallbeadsofradius1.4Å.Theshellcoatedthesurfaceoftheprotein,modelingitsrugosity,andincreasingthesizeoftheproteinbytheequivalentofasinglelayerofboundwater.ThisanalysishasbeenextendedbyGarciaDeLaTorreandcolleagues(7).
IfthePerrinequationisuseless,istheresomeotherwaythatshapecanbeinterpretedfromf?Theanswerisyes,atasemiquantitativelevel.Wehavediscoveredsimpleguidelineswheretheratiof/fmincanprovideagoodindicationofwhetheraproteinisglobular,somewhatelongated,orveryelongated.
| (4.3a) | 
| (4.3b) | 
ProteinMr(kDa)  | 10  | 25  | 50  | 100  | 200  | 500  | 1,000  | 
|---|---|---|---|---|---|---|---|
SmaxSvedbergs  | 1.68  | 3.1  | 4.9  | 7.8  | 12.3  | 22.7  | 36.1  | 
| • | NoproteinhasSmax/S = f/fminsmallerthan∼1.2. | 
| • | Forapproximatelyglobularproteins: Smax/Sistypicallybetween1.2and1.3.  | 
| • | Formoderatelyelongatedproteins: Smax/Sisintherangeof1.5to1.9.  | 
| • | Forhighlyelongatedproteins(tropomyosin,fibrinogen,extendedfibronectin): Smax/Sisintherangeof2.0to3.0.  | 
| • | Forverylongthread-likemoleculeslikecollagen,orhugeextendedmoleculeslikethetenascinhexabrachion(notshown): Smax/Scanrangefrom3–4ormore.  | 
Protein  | Dimensions(nm)  | Mass  | Smax  | S  | Smax/S  | |
|---|---|---|---|---|---|---|
Globularproteinstandardsdimensionsarefrompdbfiles  | ||||||
Phosphofructokinase  | 14 × 9 × 9  | 345,400  | 17.77  | 12.2  | 1.46  | |
Catalase  | 9.7 × 9.2 × 6.7  | 230,000  | 13.6  | 11.3  | 1.20  | |
Serumalbumin  | 7.5 × 6.5 × 4.0  | 66,400  | 5.9  | 4.6  | 1.29  | |
Hemoglobin  | 6 × 5 × 5  | 64,000  | 5.78  | 4.4  | 1.32  | |
Ovalbumin  | 7.0 × 3.6 × 3.0  | 43,000  | 4.43  | 3.5  | 1.27  | |
FtsZ  | 4.8 × 4 × 3  | 40,300  | 4.26  | 3.4  | 1.25  | |
Elongatedproteinstandards—tenascinfragments(27,28);heatrepeat(29,30)  | ||||||
TNfn1–5  | 14.7 × 1.7 × 2.8  | 50,400  | 4.94  | 3.0  | 1.65  | |
TNfn1–8  | 24.6 × 1.7 × 2.8  | 78,900  | 6.64  | 3.6  | 1.85  | |
TNfnALL  | 47.9 × 1.7 × 2.8  | 148,000  | 10.1  | 4.3  | 2.36  | |
PR65/AHEATrepeat  | 17.2 × 3.5 × 2.0  | 60,000  | 5.53  | 3.6  | 1.54  | |
Fibrinogen  | 46 × 3 × 6  | 390,000  | 19.3  | 7.9  | 2.44  | |
| • | ArodofthreebeadshasaboutatwofoldhigherSthanasinglebead. | 
| • | Smax/Sis1.18forthesinglebead(theeffectoftheassumedshellofwater),1.34forthethree-beadrod,and1.93forthestraight11-beadrod.ThisisconsistentwiththeprincipalsgiveninSection4forglobular,somewhatelongated,andveryelongatedparticles. | 
| • | Bendingtherodat90°inthemiddlecausesonlyasmallincreaseinS.BendingitintoaU-shapewiththearmsaboutonebeaddiameterapartincreasesSabitmore.Bendingthissame11-beadstructuremoresharply,sothetwoarmsareincontact,causesasubstantialincreaseinS,from5.05to5.58.TheguidingprincipleisthatfoldingaffectsSwhenonepartofthemoleculeisbroughtcloseenoughtoanothertoshielditfromwaterflow. | 
“Gelfiltrationchromatographyiswidelyusedfordeterminingproteinmolecularweight.”ThisquotefromSigma-Aldrichbulletin891Aisawidelyheldmisconception.Thefallacyisobscurelycorrectedbyalaternoteinthebulletinthat“Onceacalibrationcurveisprepared,theelutionvolumeforaproteinofsimilarshape,butunknownweight,canbeusedtodeterminetheMW.”Thekeyissueis“ofsimilarshape”.Generally,thecalibrationproteinsareallglobular,andiftheunknownproteinisalsoglobular,thecalibratedgelfiltrationcolumndoesgiveagoodapproximationofitsmolecularweight.Theproblemisthattheshapeofanunknownproteinisgenerallyunknown.Iftheunknownproteiniselongated,itcaneasilyeluteatapositiontwicethemolecularweightofaglobularprotein.
Thegelfiltrationcolumnactuallyseparatesproteinsnotontheirmolecularweightbutontheirfrictionalcoefficient.Sincethefrictionalcoefficient,f,isnotanintuitiveparameter,itisusuallyreplacedbytheStokesradiusRs.Rsisdefinedastheradiusofasmoothspherethatwouldhavetheactualfoftheprotein.Thisismuchmoreintuitivesinceitallowsonetoimaginearealsphereapproximatelythesizeoftheprotein,orsomewhatlargeriftheproteiniselongatedandhasboundwater.
| (6.1) | 
TheStokesradiusRsislargerthanRminbecauseitistheradiusofasmoothspherewhosefwouldmatchtheactualfoftheprotein.Itaccountsforboththeasymmetryoftheproteinandtheshellofboundwater.Morequantitatively,f/fmin = Smax/S = Rs/Rmin.
Protein  | Mraaseq  | S20,w  | Smax/S  | Rs(nm)  | Source  | MrS-M  | 
|---|---|---|---|---|---|---|
RibonucleaseAbeefpancreas  | 14,044  | 2.0a  | 1.05a  | 1.64  | HBC  | 13,791  | 
ChymotrypsinogenAbeefpancreas  | 25,665  | 2.6  | 1.21  | 2.09  | HBC  | 22,849  | 
Ovalbuminhenegg  | 42,910s  | 3.5  | 1.27  | 3.05  | HBC  | 44,888  | 
Albuminbeefserum  | 69,322  | 4.6a  | 1.33  | 3.55  | S-M,HBC  | 68,667  | 
Aldolaserabbitmuscle  | 157,368  | 7.3  | 1.45  | 4.81  | HBC  | 147,650  | 
Catalasebeefliver  | 239,656  | 11.3  | 1.21  | 5.2  | S-M  | 247,085  | 
Apo-ferritinhorsespleen  | 489,324  | 17.6  | 1.28  | 6.1  | HBC  | 451,449  | 
Thyroglobulinbovine  | 606,444  | 19  | 1.37  | 8.5  | HBC  | 679,107  | 
Fibrinogen,human  | 387,344  | 7.9  | 2.44  | 10.7  | S-M  | 355,449  | 
| (6.2) | 
| (6.3) | 
Simplyknowing,Rsisnotveryvaluableinitself,exceptforestimatingthedegreeofasymmetry,butthiswouldbethesameanalysisdevelopedaboveforSmax/S.However,ifonedeterminesbothRsandS,thispermitsadirectdeterminationofmolecularweight,whichcannotbededucedfromeitheronealone.Thisisdescribedinthenextsection. Withthecompletionofmultiplegenomesandincreasinglygoodannotation,theprimarysequenceofalmostanyproteincanbefoundinthedatabases.Themolecularweightofeveryproteinsubunitisthereforeknownfromitssequence.Butanexperimentalmeasureisstillneededtodetermineifthenativeproteininsolutionisamonomer,dimer,oroligomer,orifitformsacomplexwithotherproteins.Ifonehasapurifiedprotein,themolecularweightcanbedeterminedquiteaccuratelybysedimentationequilibriumintheanalyticalultracentrifuge.ThistechniquehasmadeastrongcomebackwiththeintroductionoftheBeckmanXL-Aanalyticalultracentrifuge.Thereareanumberofgoodreviews(14,15),andthedocumentationandprogramsthatcomewiththecentrifugeareveryinstructive. WhatifonedoesnothaveanXL-Acentrifugeortheproteinofinterestisnotpurified?In1966,SiegelandMonte(4)proposedamethodthatachievestheresultsofsedimentationequilibrium,withtwoenormousadvantages.First,itrequiresonlyapreparativeultracentrifugeforsucroseorglycerolgradientsedimentationandagelfiltrationcolumn.Thisequipmentisavailableinmostbiochemistrylaboratories.Second,theproteinofinterestneednotbepurified;oneneedsonlyanactivityoranantibodytolocateitinthefractions.Thisisaverypowerfultechniqueandshouldbeintherepertoireofeveryproteinbiochemist. whereSisinSvedbergunits,Rsisinnanometer,andMisinDaltons. ApplicationtoSMCproteinfromB.subtilis.Inthesectionsabove,weshowedhowSoftheSMCproteinfromB.subtiliswasdeterminedtobe6.3Sfromglycerolgradientsedimentation,andRswas10.3nm,fromgelfiltration.PuttingthesevaluesinEq.7.1b,wefindthatthemolecularweightofSMCproteinfromB.subtilisis273,000Da.Fromtheaminoacidsequence,weknowthatthemolecularweightofoneSMCproteinfromB.subtilissubunitis135,000Da.TheSiegel–MonteanalysisfindsthattheSMCproteinfromB.subtilismoleculeisadimer. KnowingthatSMCproteinfromB.subtilisisadimerwithmolecularweight270,000Da,wecannowdetermineitsSmax/S.Smaxis15.1(Eq.4.3b)soSmax/Sis2.4.TheSMCproteinfromB.subtilismoleculeisthusexpectedtobehighlyelongated.EM(seebelow)confirmedthisprediction. Sincetheearly1980s,electronmicroscopyhasbecomeapowerfultechniquefordeterminingthesizeandshapeofsingleproteinmolecules,especiallyoneslargerthan100kDa.TwotechniquesavailableinmostEMlaboratories,rotaryshadowingandnegativestain,canbeusedforimagingsinglemolecules.Cryo-EMisbecomingapowerfultoolforproteinstructuralanalysis,butitrequiresspecialequipmentandexpertise.Foralargenumberofapplications,rotaryshadowingandnegativestainprovidetheessentialstructuralinformation. Forrotaryshadowing,adilutesolutionofproteinissprayedonmica,theliquidisevaporatedinahighvacuum,andplatinummetalisevaporatedontothemicaatashallowangle.Themicaisrotatedduringthisprocess,sotheplatinumbuildsuponallsidesoftheproteinmolecules.ThefirstEMimagesofsingleproteinmoleculeswereobtainedbyHallandSlayterusingrotaryshadowing(16).Theirimagesoffibrinogenshowedadistinctivetrinodularrod.However,rotaryshadowingfellintodisfavorbecausetheimagesweredifficulttoreproduce.Proteintendedtoaggregateandcollectsalt,ratherthanspreadassinglemolecules.In1976,JamesPullman,agraduatestudentattheUniversityofChicago,thendevisedaprotocolwithonesimplebutcrucialmodification—headded30%glyceroltotheproteinsolution.Forreasonsthatarestillnotunderstood,theglycerolgreatlyhelpsthespreadingoftheproteinassinglemolecules. Pullmanneverpublishedhisprotocol,buttwolabssawhismimeographednotesandtestedouttheeffectofglycerol,asapartoftheirownattemptstoimproverotaryshadowing(17,18).Theyobtainedreproducibleandcompellingimagesoffibrinogen(thefirstsincetheoriginalHallandSlayterstudyandconfirmingthetrinodularrodstructure)andspectrin(thefirsteverimagesofthislargeprotein).Thetechniquehassincebeenusedincharacterizinghundredsofproteinmolecules. NegativestainisanotherEMtechniquecapableofimagingsingleproteinmolecules.Itisespeciallyusefulforimaginglargermoleculeswithacomplexinternalstructure,whichappearonlyasalargeblobinrotaryshadowing.Importantly,noncovalentprotein–proteinbondsaresometimesdisruptedintherotaryshadowingtechnique(8),buturanylacetate,inadditiontoprovidinghighresolutioncontrast,fixesoligomericproteinstructuresinafewmilliseconds(22).Anexcellentreviewofmoderntechniquesofnegativestaining,withcomparisontocryo-EM,isgivenin(23). ThesimplepictureofthemoleculeproducedbyEMisfrequentlythemoststraightforwardandsatisfyingstructuralanalysisatthe1–2-nmresolution.Whenthestructureisconfirmedbyhydrodynamicanalysis,theinterpretationisevenmorecompelling. ThetextboxaboveshowedtheapplicationoftheSiegel–MonteanalysistoSMCproteinfromB.subtilis,whichhadonlyonetypesubunitandwasfoundtobeadimer.Similarhydrodynamicanalysiscanbeusedtoanalyzemultisubunitproteincomplexes.Therearemanyexamplesintheliterature;IwillshowhereanelegantapplicationtoDASH/Dam1.(7.1a) (7.1b) • Forboththegelfiltration(sizeexclusionchromatography,Fig.5a)andgradientsedimentation,Fig.5b,twocalibrationcurvesofknownproteinstandardsareshown,greenandblack.Theseareindependentcalibrationruns.Inthisstudy,thegelfiltrationcolumnwascalibratedintermsofthereciprocaldiffusioncoefficient,1/D,whichisproportionaltoRs(Eq.6.2). • ThefractionswereanalyzedbyWesternblotforthelocationoftwoproteinsofthecomplex,Spc34pandHsk3p.Methodsnotesthat1mlfractionsfromgelfiltrationwereprecipitatedwithperchloricacidandrinsedwithacetonepriortoSDS-PAGE,anessentialamplificationforthedilutesamplesofyeastcytoplasmicextract.Thesetwoproteinselutedtogetherinbothgelfiltrationandsedimentation,consistentwiththeirbeingpartofthesamecomplex. • TheprofilesofthetwoproteinswereidenticalwhenanalyzedintheirnativeforminyeastcytoplasmicextractandasthepurifiedcomplexexpressedinE.coli.Thisisstrongevidencethattheexpressionproteiniscorrectlyfoldedandassembled. • Thereisminimaltrailingofanysubunits.Thismeansthatthereisnosignificantdissociationduringthetensofminutesforthegelfiltration,orthe12-hcentrifugation.Thecomplexisheldtogetherbyveryhighaffinitybonds,makingitessentiallyirreversible. • CombiningtheRs = 7.6nm(from1/D = 0.35 × 10−7,andS = 7.4,Eq.7.1bgivesamassofM = 236kDa,closetothe204kDaobtainedfromaddingthemassofthetensubunits.Smaxis12.6givingSmax/S = 1.7,suggestingamoderatelyelongatedprotein. 
                    