生物谷编者按:目前大量的基因转录和表达资源,但却没有良好的实验方法和手段,本文提供了一个新的思路去分析这些大量信息,生物信息学专业人员应该值得参考,后附全文下载(PDF) High-throughputproteinanalysisintegratingbioinformaticsandexperimentalassays. NucleicAcidsRes.2004Feb3;32(2):742-8 Thewealthoftranscriptinformationthathasbeenmadepubliclyavailableinrecentyearsrequiresthedevelopmentofhigh-throughputfunctionalgenomicsandproteomicsapproachesforitsanalysis.Suchapproachesneedsuitabledataintegrationproceduresandahighlevelofautomationinordertogainmaximumbenefitfromtheresultsgenerated.WehavedesignedanautomaticpipelinetoanalyseannotatedopenreADIngframes(ORFs)stemmingfromfull-lengthCDNAsproducedmainlybytheGermancDNAConsortium.TheORFsareclonedintoexpressionvectorsforuseinlarge-scaleassayssuchasthedeterminationofsubcellularproteinlocalizationorkinasereactionspecificity.Additionally,allidentifiedORFsundergoexhaustivebioinformaticanalysissuchassimilaritysearches,proteindomainarchitecturedeterminationandpredictionofphysicochemicalcharacteristicsandsecondarystructure,usingawidevarietyofbioinformaticmethodsincombinationwiththemostup-to-datepublicdatabases(e.g.PRINTS,BLOCKS,INTERPRO,PROSITESWISSPROT).Datafromexperimentalresultsandfromthebioinformaticanalysisareintegratedandstoredinarelationaldatabase(MSSQL-Server),whichmakesitpossIBLeforresearcherstofindanswerstoBIOLOGicalquestionseasily,therebyspeedinguptheselectionoftargetsforfurtheranalysis.ThedesignedpipelineconstitutesanewautomaticapproachtoobtainingandadmiNISTratingrelevantbiologicaldatafromhigh-throughputinvestigationsofcDNAsinordertosystematicallyidentifyandcharacterizenovelgenes,aswellastocomprehensivelydescribethefunctionoftheencodedproteins. 全文请点击下载