
1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane, known as TAPC, has been widely used as a hole transport material in organic light-emitting diodes (OLEDs) due to its high hole mobility.
Having a higher ET (2.87 eV) than the typical blue phosphorescent guest material, TAPC can be used as both hole-transport layer material and as host for blue phosphorescent (such as FIrpic) guest molecules, resulting in a reduction of the number of organic layers and simplified OLED structures.
General Information
CAS number | 58473-78-2 |
Chemical formula | C46H46N2 |
Molecular weight | 626.87 g/mol |
Absorption | λmax 305 nm (in THF) |
Fluorescence | λem 414 nm (in THF) |
HOMO/LUMO | HOMO = 5.5 eV, LUMO = 2.0 eV |
Synonyms |
|
Classification / Family | Triphenylamine derivatives, Hole-injection layer (HIL) materials, Hole transport layer (HTL) materials, Electron blocking layer (EIL) materials, Phosphorescent host materials, Thermally-activated delayed fluorescence (TADF) materials, Organic light-emitting diodes (OLEDs), Organic electronics |
Product Details
Purity | >99.5% (sublimed*) >98.0% (unsublimed) |
Melting point | 186 °C (lit.) |
Appearance | White powder/crystals |
*For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure

Device Structure(s)
Device structure | ITO(50 nm)/PEDOT:PSS(60 nm)/TAPC(20 nm)/mCP(10 nm)/mCP:BmPyPb*:4CzIPN(25 nm)/TSPO1(35 nm)/LiF(1 nm)/Al(200 nm) [1] |
Colour | Green ![]() |
Max. EQE | 28.6% |
Max. Power Efficiency | 56.6 lm W−1 |
Device structure | ITO/TAPC (40 nm)/TCTA (2 nm)/26DCzPPy:TCTA:FIrpic (0.4:0.4:0.2) (5 nm)/26DCzPPy:PPT:FIrpic (0.4:0.4:0.2) (5 nm)/3TPYMB (55 nm)/CsF (2 nm)/Al (180 nm) [2] |
Colour | Blue ![]() |
Current Efficiency @ 1000 cd/m2 | 42 cd/A |
Power Efficiency @ 1000 cd/m2 | 30 lm W−1 |
Device structure | ITO/TAPC:MoOx (10 nm, 15 wt.%)/TAPC(35 nm)/TcTa:Ir(BT)2(acac) (5 nm, 4 wt.%)/26DCzPPy:FIrpic (5 nm, 15 wt.%)/26DCzPPy:Ir(BT)2(acac) (5 nm, 4 wt.%)/BPhen (40 nm)/Cs2CO3 (1 nm)/Al (100 nm) [3] |
Colour | White ![]() |
Max. EQE | 13.2% |
Max. Current Efficiency | 35.0 cd/A |
Max. Power Efficiency | 30.6 lm W−1 |
Device structure | Si/SiO2/Al (80 nm)/MoOx: TAPC (43 nm, 15 wt.%)/TAPC (10 nm)/Ir(piq)3:TcTa (3 nm, 6%)/TcTa (2 nm)/FIrpic:26DCzPPy (5 nm, 12 wt.%)/BPhen (2 nm)/PO-01*:26DCzPPy (5 nm, 6 wt.%)/BPhen (40 nm)/Cs2CO3 (1 nm)/Al (2 nm)/Cu (18 nm)/TcTa (60 nm) [4] |
Colour | White ![]() |
EQE @ 1000 cd/m2 | 10% |
Current Efficiency @ 1000 cd/m2 | 25.6 cd/A |
Power Efficiency @ 1000 cd/m2 | 20.1 lm W−1 |
Device structure | ITO (90 nm)/HATCN (5 nm)/TAPC (65 nm)/10 wt% fac -Ir(mpim)3 –doped TCTA (5 nm)/10 wt% fac -Ir(mpim)3 -doped 26DCzPPy (5 nm)/B3PyPB* (65 nm)/Liq (2 nm)/Al (80 nm) [5] |
Colour | Blue ![]() |
EQE @ 100 cd/m2 | 29.6% |
Current Efficiency @ 100 cd/m2 | 73.2 cd/A |
Power Efficiency @ 100 cd/m2 | 75.6 lm W−1 |
Device structure | ITO/TAPC (40 nm)/TcTa (10 nm)/5a* (4%):TcTa (5 nm)/5a* (4%):26DCzPPy (10 nm)/TmPyPB (40 nm)/LiF(1 nm)/Al(100 nm) [6] |
Colour | Red ![]() |
Max. Luminance | 11,023 cd/m2 |
Max. Current Efficiency | 17.36 cd/A |
Max. Power Efficiency | 14.73 lm W−1 |
Device structure | ITO /TAPC/(1wt% DPB:99wt%tri-PXZ-TRZ*):CBP (15:85)/LiF/Al [7] |
Colour | Red ![]() |
Max EQE | 17.5% |
Max. Power Efficiency | 28 lm W−1 |
Device structure | ITO (180 nm)/TAPC (60 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [8] |
Colour | Blue ![]() |
Luminance @ 200 cd/m2 | 32,570 cd/m2 |
Max. Current Efficiency | 43.76 cd/A |
Max. EQE | 23.4% |
Max. Power Efficiency | 21.4 lm W−1 |
Device structure | ITO/TAPC (50 nm)/TcTa:FIrpic (7%,10 nm)/26DCzPPy:FIrpic (20%, 10 nm)/Tm3PyPB (20 nm)/Tm3PyPB:Cs (30 nm)/LiF (1 nm)/Al (120 nm) [9] |
Colour | Blue ![]() |
Max. EQE | 20.3% |
Max. Power Efficiency | 36.7 lm W−1 |
Device structure | ITO/MoO3 (8 nm)/(NPB)(80 nm)/TAPC(5 nm)/TCTA:4 wt% Ir(MDQ)2(acac) (4 nm)/TCTA:2 wt% Ir(ppy)3 (4 nm)/43 wt% TCTA: 43 wt% 26DCzPPy: 14 wt% FIrpic (5 nm)/TmPyPb (40 nm)/LiF/Al [10] |
Colour | White ![]() |
Max. EQE | 19.4% |
Max. Current Efficiency | 43.6 cd/A |
Max. Power Efficiency | 45.8 lm W−1 |
Device structure | ITO/PEDOT:PSS(40 nm)/TCTA:TAPC:FIrpic:Ir(ppy)3:Ir(MDQ)2(acac) (40nm)/TmPyPB (50 nm)/LiF (1 nm)/Al [11] |
Colour | White ![]() |
Max. Current Efficiency | 37.1 cd/A |
Max. Power Efficiency | 32.1 lm W−1 |
Device structure | ITO/HAT-CN (10 nm)/HAT-CN:TAPc (2:1, 60 nm)/TAPc (20 nm)/TcTa:Be(pp)2:Ir(mppy)3 (1:1:8 wt% 10 nm)/Be(pp)2:Liq (1:10%, 35 nm)/Liq (1 nm)/Al (1 nm)/HAT-CN (20 nm)/HAT-CN:TAPc (2:1, 10 nm)/TAPc (40 nm)/ TcTa:Be(pp)2:Ir(mppy)3 (1:1:8 wt% 10 nm)/Be(pp)2 (15 nm)/Be(pp)2:Liq (1:10%, 35 nm)/Liq (1 nm)/Al (100 nm) [12] |
Colour | Green ![]() |
Max. Current Efficiency | 241 cd/A |
Max. Power Efficiency | 143 lm W−1 |
Device structure | ITO/HAT-CN (10 nm)/TAPC (45 nm)/BCzSCN*:FIrpic:PO-01 (8 wt%, 0.5 wt%, 20 nm)/TmPyPB (50 nm)/Liq (2 nm)/Al (120 nm) [13] |
Colour | Blue ![]() |
Max. EQE | 22% |
Max. Current Efficiency | 66.0 cd/A |
Max. Power Efficiency | 64.0 lm W−1 |
Device structure | ITO/HAT-CN (10 nm)/TAPC (45 nm)/mCP:Ir(dbi)3 10 wt% (20 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (120 nm) [14] |
Colour | Sky Blue ![]() |
Max. EQE | 23.1% |
Max. Current Efficiency | 61.5 cd/A |
Max. Power Efficiency | 43.7 lm W−1 |
Device structure | Graphene (2–3 nm)/TAPC (30 nm)/HAT-CN (10 nm)/TAPC (30 nm)/HAT-CN (10 nm)/TAPC (30 nm)/ TCTA:FIrpic (5 nm)/DCzPPy: FIrpic (5 nm)/BmPyPB (40 nm)/LiF (1 nm)/Al (100 nm) [15] |
Colour | Blue ![]() |
Max. EQE | 15.1% |
Max. Power Efficiency | 14.5 lm W−1 |
Device structure | ITO/TAPC (40 nm)/TCTA:Ir(piq)3 2 wt % (1 nm)/TCTA 46 wt %:BP4mPy 46 wt %: FIrpic 8 wt % (28 nm)/BP4mPy:Ir(piq)3 3 wt % (1 nm)/BP4mPy (40 nm)/LiF (0.8 nm)/Al (150 nm) [16] |
Colour | White ![]() |
Max. Luminance | 19,007 cd/m2 |
Max EQE | 11.3% |
Max. Current Efficiency | 15.6 cd/A |
Max. Power Efficiency | 16.3 lm W−1 |
*For chemical structure information please refer to the cited references
Pricing
Grade | Order Code | Quantity | Price |
Sublimed (>99.5%) | M811 | 500 mg | £230.00 |
Unsublimed (>98.0%) | M812 | 1 g | £227.00 |
Sublimed (>99.5%) | M811 | 1 g | £368.00 |
MSDS Documentation
TAPC MSDS sheet
Literature and Reviews
- Engineering of Mixed Host for High External Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescence Device, B. Kim et al., Adv. Funct. Mater., 24, 3970–3977 (2014).
- Blue and white phosphorescent organic light emittingdiode performance improvementbyconfining electrons and holes inside double emitting layers, Y-S.Tsai et al., J. Luminescence 153, 312–316 (2014); http://dx.doi.org/10.1016/j.jlumin.2014.03.040.
- Color stable and low driving voltage white organic light-emitting diodes with low efficiency roll-off achieved by selective hole transport buffer layers, Z. Zhang et al., Org. Electronics 13, 2296–2300 (2012); http://dx.doi.org/10.1016/j.orgel.2012.07.001.
- High performance top-emitting and transparent white organic light-emitting diodes based on Al/Cu/TcTa transparent electrodes for active matrix displays and lighting applications, Z. Zhang et al., Org. Electronics,14, 1452–1457 (2013); http://dx.doi.org/10.1016/j.orgel.2013.03.007.
- Low-Driving-Voltage Blue Phosphorescent Organic Light-Emitting Devices with External Quantum Efficiency of 30%, K. Udagawa et al., Adv. Mater., 26, 5062–5066 (2014); DOI: 10.1002/adma.201401621.
- Efficient red organic electroluminescent devices by doping platinum(II) Schiff base emitter into two host materials with stepwise energy levels, L. Zhou et al., Opt. Lett., 38 (14), 2373-2375 (2013); http://dx.doi.org/10.1364/OL.38.002373.
- High-efficiency organic light-emitting diodes with fluorescent emitters, H. Nakanotani et al., Nat. Commun., 5, 4016, DOI: 10.1038/ncomms5016.
- Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
- Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials, Jeong-Ik Lee et al. ETRI J., 34 (5), 690-695 (2012).
- High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers, Q. Zhang et al., Chin. Phys. Lett., 31 (4) 046801 (2014).
- Solution-Processed Small Molecules As Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes, Q Fu. et al., ACS Appl. Mater. Interfaces, 4, 6579−6586 (2012); dx.doi.org/10.1021/am301703a.
- Highly efficient and stable tandem organic light-emitting devices based on HAT-CN/HAT-CN:TAPC/TAPC as a charge generation layer, Y. Dai et al., J. Mater. Chem. C, 3, 6809-6814 (2015);DOI: 10.1039/C4TC02875A.
- Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: tuning the HOMO/LUMO levels without reducing the triplet energy in a linear system, L. Cui et al., J. Mater. Chem. C, 1, 8177-8185 (2013); DOI: 10.1039/C3TC31675K.
- Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant, J. Zhuang et al., Org. Electronics 14, 2596–2601 (2013); http://dx.doi.org/10.1016/j.orgel.2013.06.029.
- Multilayered graphene anode for blue phosphorescent organic light emitting diodes, J. Hwang et al., Appl. Phys. Lett. 100, 133304 (2012); http://dx.doi.org/10.1063/1.3697639.
- Efficient red, green, blue and white organic light-emitting diodes with same exciplex host, C-H. Chang et al., Jpn. J. Appl. Phys. 55, 03CD02 (2016); http://doi.org/10.7567/JJAP.55.03CD02.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
采用OPA柱前衍生,波长是338nm
流动相A:20mmol/LNaH2PO4(用10mol/LNaOH溶液调pH至7.8±0.2);
流动相B:甲醇:乙腈:水=(45:45:10,V/V/V);
柱温:40℃;
然后进其他单标氨基酸的时候都没有问题,但是进单标胱氨酸的时候,HPLC色谱图中出了两峰,为什么会有两峰?这两峰分别是什么峰?其中一个是半胱氨酸的峰吗?用何种方法可以确定这两个分别是什么峰?
第一次发帖,生怕叙述不清。
请问有哪位大神做过几个同源基因氨基酸序列保守性的图,本人做了一篇几个同源基因的SNP与疾病相关性的研究,投稿后,reviewer给的意见是,希望做一副这几个同源基因的氨基酸序列比对结果图,标注保守序列,我会查,但是不知道怎么做图,截屏么?还是有什么专用的软件?谢谢大家!
类似这样,但这个图是不同物种的同一基因序列保守性分析的图
20种蛋白质氨基酸都是α氨基酸。
其中除了甘氨酸外,其他氨基酸都具有旋光性,旋光性是由分子的空间构象引起的,你可以理解成像你的手掌一样,左右手的指头位置不同导致左右手的区别。根据旋光性分为L型(左型)和D型(右型)两种。
组成生命的氨基酸基本上都是L型。
没有这8种氨基酸就会发生由于缺乏营养所引起的疾病;氨基酸在医药上也有很大的用途,现在手术中输液都加有各种氨基酸,使患者的抵抗力增强,同时也增加营养。随着人民生活水平的提高,人们对摄入的营养物质的要求越来越高,尤其是幼儿、青少年的健康成长,疾病患者的康复,都迫切需要高质量的营养物质,所以有效开发氨基酸食品是很有必要的。
我在看基因方面的文献。基因位点C802T的氨基酸改变H268Y是什么意思啊。求大神指教
氨基酸的分类:1、根据侧链基团的极性①非极性氨基酸(疏水氨基酸)8种丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)②极性氨基酸(亲水氨基酸):极性不带电荷:7种甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)极性带正电荷的氨基酸(碱性氨基酸) 3种 赖氨酸(Lys)精氨酸(Arg)组氨酸(His)极性带负电荷的氨基酸(酸性氨基酸) 2种 天冬氨酸(Asp)谷氨酸(Glu)2、根据化学结构脂肪族氨基酸:丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺芳香族氨基酸:苯丙氨酸、酪氨酸杂环族氨基酸:组氨酸、色氨酸杂环亚氨基酸:脯氨酸3、从营养学的角度①必需氨基酸(essential amino acid): 指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。共有8种其作用分别是:赖氨酸:促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化;色氨酸:促进胃液及胰液的产生;苯丙氨酸:参与消除肾及膀胱功能的损耗;蛋氨酸(甲硫氨酸):参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能;苏氨酸:有转变某些氨基酸达到平衡的功能;异亮氨酸:参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺;亮氨酸:作用平衡异亮氨酸;缬氨酸:作用于黄体、乳腺及卵巢。②半必需氨基酸和条件必需氨基酸:精氨酸:精氨酸与脱氧胆酸制成的复合制剂(明诺芬)是主治梅毒、病毒性黄疸等病的有效药物。组氨酸:可作为生化试剂和药剂,还可用于治疗心脏病,贫血,风湿性关节炎等的药物。人体虽能够合成精氨酸和组氨酸,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。(近年很多资料和教科书将组氨酸划入成人必需氨基酸)③非必需氨基酸(nonessentialamino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。例如甘氨酸、丙氨酸等氨基酸。

