![SMOBIO/[NS1000] FluoroVue™ Nucleic Acid Gel Stain (10,000X), 500 μl/000X), 500 μl/NS1000](images/SMOBIO/image.png)
Description
FluoroVue™ Nucleic Acid Gel Stain (10,000X) is specially designed for in-gel use and is a safer replacement for conventional Ethidium bromide (EtBr), which poses a significant health and safety hazard to its users. It is a fluorescent stain which offers highly sensitive detection of double-stranded or single-stranded DNA and RNA in a convenient manner. FluoroVue™ Nucleic Acid Gel Stain offers high sensitivity that is several times greater than EtBr.
FluoroVue™ Nucleic Acid Gel Stain is compatible with both conventional UV gel-illumination systems as well as harmless long wavelength blue light illumination systems, like B-BOX™. When bound to nucleic acids, FluoroVue™ Nucleic Acid Gel Stain has a fluorescent excitation maximum of 250 and 482 nm, and an emission maximum of 509 nm. Therefore, it can replace EtBr without the need of changing existing lab imaging systems.
Features:
Excellent for in-gel staining
Sensitivity: 0.14 ng (DNA) or 1 ng (total RNA)
A safer alternative to EtBr
Compatibility: suitable to blue or UV light
Increased cloning efficiency (blue light)
Storage
Protected from light4°C for 12 months-20°C for 24 months

Sensitivity of FluoroVue™
The FluoroVue™ Nucleic Acid Gel Stain (NS1000) shows a green-yellow fluorescence under blue light excitation. The sensitivity of NS1000 is about 0.14 ng (arrow) for a 4 kb fragment.

Excitation and emission spectrum of FluoroVue™
FluoroVue™ Nucleic Acid Gel Stain (NS1000) has a fluorescent excitation maxima of ~250 and ~482 nm, and an emission maximum of ~509 nm. Therefore, it can replace EtBr without the need for changing existing lab imaging systems.

Non-mutagenicity of FluoroVue™
FluoroVue™ Nucleic Acid Gel Stain (NS1000) is proofed for their safety (non-mutagenicity) using Ames test. However, it must be noted that since solvent may penetrate the skin, it is recommended that users wear gloves when using the fluorescent dyes.
Contents
Component | Volume | Cat. No. |
FluoroVue™ Nucleic Acid Gel Stain (10,000X | 500 μl | NS1000 |
FluoroVue™ Nucleic Acid Gel Stain (10,000X) | 5 x 500 μl | NS1001 |
Storage
Protected from light4°C for 12 months-20°C for 24 months
Manual
Manual_NS1000_FluoroVue™ Nucleic Acid Gel Stain
SDS
SDS_NS1000
Safety report
Safety report- Ames test
Safety report- cytotoxicity test
Will FluoroVue™ Nucleic Acid Gel Stain (NS1000) affect the DNA/RNA samples in subsequent experiments?
Using FluoroVue™ Nucleic Acid Gel Stain (NS1000) does not affect subsequent operations. This is because the fluorescent dye can easily be removed by regular alcohol precipitation or gel elution kits.
Will the FluoroVue™ Nucleic Acid Gel Stain (NS1000) affect cloning efficiency?
Using the fluorescent dye coupled with blue light, the cloning efficiency is increased by about 100 times compared to using EtBr and UV light.
Are there relevant document that support safety of FluoroVue™ Nucleic Acid Gel Stain (NS1000)?
FluoroVue™ Nucleic Acid Gel Stain (NS1000) is proofed for their safety, including non-mutagenicity and non-cytotoxicity (documents below). However, it must be noted that since solvent may penetrate the skin, it is recommended that users wear gloves when using the fluorescent dyes.
Safety report- Ames test
Safety report- cytotoxicity test
Does the quality of agarose gel matter when using FluoroVue™ Nucleic Acid Gel Stain (NS1000)?
Yes, insufficient quality of agarose gel may lead to the limited performance of the dye.
How many ways can the FluoroVue™ Nucleic Acid Gel Stain (NS1000) be used? ?
For using the FluoroVue™ Nucleic Acid Gel Stain (NS1000), it is highly recommended to be used with in-gel staining method. NS1000 can also be used with post staining or staining during electrophoresis.
Why does the gel stained with FluoroVue™ Nucleic Acid Gel Stain (NS1000) show minimal background which is barely seen as compared with DNA/RNA signals that are strongly fluorescent after staining?
The FluoroVue™ Nucleic Acid Gel Stain (NS1000) exhibits fluorescent signal when it binds with nucleic acid (dsDNA, ssDNA, and RNA).
How many cycles of freezing and thawing can the FluoroVue™ Nucleic Acid Gel Stain (NS1000) handle? If 5 μL is used at once, will it have a usage of 100 times?
Our tests have shown that 100 freezing and thawing cycles will be appropriate for the FluoroVue™ Nucleic Acid Gel Stain (NS1000). In NS1000"s usage information, it is indicated that the fluorescent dye should be protected from light and kept at low temperatures. After using NS1000, it should immediately be kept between 4℃ to -20℃ as fluorescent dye decays at a faster rate at room temperature. Please remember that any unthawed solution will cause the fluorescent dye concentration to be less after each use therefore reducing its sensitivity performance.
Can the FluoroVue™ Nucleic Acid Gel Stain (NS1000) be removed from DNA? How can we do it?
The staining dye can be removed from DNA with traditional ethanol precipitation, PCR clean up kits, or the gel extraction kits. The ethanol precipitation method can follow conventional molecular cloning or follow the listed protocol. Ethanol precipitation.
A.Measure the volume of the DNA sample. B.Add 1/10 volume of 3M sodium acetate, pH 5.2,(final concentration of 0.3 M) - The pH value of 3M sodium acetate must be adjusted with acetate not with HCl. C.Mix well. D.Add 2 to 2.5 volumes of cold 100% ethanol (calculated after salt addition). E.Mix well. F.Place on ice or at -20 °C for >20 minutes.G.Spin at maximum speed in a microfuge for 10-15 min.H.Carefully decant supernatant. I.Add 1 mL 70% ethanol. Rinse and spin briefly. Carefully decant supernatant.J.Air dry or briefly vacuum dry pellet. K.Re-suspend pellet in the appropriate volume of TE, Tris buffer or water.
Can the FluoroVue™ Nucleic Acid Gel Stain (NS1000) stained DNA be used for enzymatic reaction like ligation, enzyme digestion, PCR and so on? Do you have any recommended methods like pretreatment?
After removing the fluorescent staining dye from DNA, the DNA can be used for ligation, restriction enzyme digestion or PCR reaction. It is imperative that the DNA is maintained in good quality for bioassay after removing thefluorescent staining dye. We recommend removing the FluoroVue™ Nucleic Acid Gel Stain (NS1000) with the gel extraction kits or PCR clean up kits because these methods are convenient and high efficiency. The very low amount of fluorescent staining dye does not affect ligation, enzyme digestion or PCR. However, the threshold is related to the enzyme systems and it is on a case-by-case basis. For the best results, we recommend to remove the staining dye from DNA before proceeding to the next step of the experiment.
How do we dispose of the staining solution? Is the disposal method for EtBr solution acceptable for this product?
We recommend that disposal be made in accordance to the local law. The freshly prepared FluoroVue™ Nucleic Acid Gel Stain (NS1000) solution can be filtered through activated charcoal before disposal. The charcoal can then be disposed of by incineration. One gram of activated charcoal easily absorbs the dye from 10 liters of freshly prepared working solution.
When the FluoroVue™ Nucleic Acid Gel Stain (NS1000) or EtBr is used for in-gel staining, why do some of the lowest bands become weaker in a longer agarose gel?
This is because EtBr or the dye component of FluoroVue™ Nucleic Acid Gel Stain (NS1000) keep moving toward the cathode in a direction opposite to the DNA migration. Therefore after electrophoresis the concentration of NS1000 or EtBr is very low near the anode end (the bottom) of the agarose gel, and some bands close to the bottom will be very weak in signal or even undetectable. It is recommend to reduce the electrophoresis time or use post staining method to improve the intensity of small fragments of DNA.
How do we deal with certain precipitate in NS1000 ?
Occasionally, some precipitate will be observed in NS1000 due to high concentration of dye ingredient.
If slight precipitate exists in NS1000, we suggest incubating the NS1000 at 37 ℃ for one hour until the precipitate is fully dissolved.
The sensitivity of NS1000 still keeps good after the precipitate is dissolved.
Before opening
Warm the vial to an ambient temperature, then vortex and spin down the content of the vial to ensure the solution is homogeneous.
Working Reagent Preparation
1:10,000 dilution in TAE or TBE buffered agarose

In- gel staining
This protocol is highly recommended.
1. Prepare TAE or TBE buffered molten agarose solution.
40 ml molten agarose solution can cast two mini-gels (5.4 x 5.9 cm) or one landscape-gel (10.9 x 5.9 cm).
2. Dilute FluoroVue™ Nucleic Acid Gel Stain 10,000X with the molten gel solution and mix well prior to being poured into the gel.
For example: 4 μl in 40 ml molten agarose solution
3. Cool the molten agarose solution until it can be handled by hand and then pour it into gel tray.
Casted gels are stable at 4°C for 3 days in dark. After three days the sensitivity will decrease daily.
4. Perform agarose gel electrophoresis (avoid light).
The recommended voltage is 4–10 V/cm (distance between anode and cathode). Avoid using high voltage during electrophoresis. High voltage causes excess heat and affects the dye adversely.
During electrophoresis, the staining dye runs toward the anode, therefore DNA bands with smaller molecular weights may be weaker in intensity due to less staining dye.
5. Visualize or photograph the gel with UV or blue-light illumination (blue-light is recommended).
Clean the surface of the illuminator before and after each use with deionized water. Accumulation of fluorescent dyes on the surface will create a high fluorescent background.
Video cameras and CCD cameras have a different spectral response compared to the black-and-white print film and therefore may not exhibit the same sensitivity.

Staining during electrophoresis
The sensitivity of this method is slightly lower than the in-gel staining.
1. Prepare agarose gel following your standard protocol.
2. Dilute FluoroVue™ Nucleic Acid Gel Stain 10,000 folds into the running buffer and mix well.
For example: 30 μl in 300 ml running buffer
3. Perform agarose gel electrophoresis (avoid light).
During electrophoresis, the staining dye runs toward the anode.
4. Visualize or photograph the gel with UV or blue-light illumination (blue-light is recommended).
Clean the surface of the illuminator before and after each use with deionized water. Accumulation of fluorescent dyes on the surface will create a high fluorescent background.
Video cameras and CCD cameras have a different spectral response compared to the black-and-white print film and therefore may not exhibit the same sensitivity.

Staining after electrophoresis (post-staining)
Post-staining method is recommended for polyacrylamide electrophoresis, due to the longer time required for running PAGE. The sensitivity of this method is lower than the in-gel staining method.
1. Performing agarose gel electrophoresis following your standard protocol.
2. Dilute FluoroVue™ Nucleic Acid Gel Stain 10,000 folds into the TE, TAE, or TBE buffer and mix well.
For example: 10 μl in 100 ml TAE buffer
Use a plastic container. Glass containers are not recommended, as they absorb fluorescent dye in staining solution.
Protect the staining container from light by covering it with aluminium foil, or place it in the dark.
The staining solution can be stored for up to one week or more.
3. Immerse the gel in a staining solution (1X) and incubate at room temperature for 10 - 30 minutes. (avoid light).
Staining time varies with the thickness of the gel and percentage of agarose. If needed, agitate the gel gently at room temperature to shorten staining time.
4. Visualize or photograph the gel with UV or blue-light illumination (blue-light is recommended).
Clean the surface of the illuminator before and after each use with deionized water. Accumulation of fluorescent dyes on the surface will create a high fluorescent background.
Video cameras and CCD cameras have a different spectral response compared to the black-and-white print film and therefore may not exhibit the same sensitivity.
Epidemiology and clinical features of viral anterior uveitis in southern Taiwan—diagnosis with polymerase chain reaction
Yu-Ting Hsiao,1 Ming-Tse Kuo,2 Wei-Yu Chiang,2 Tsai-Ling Chao,3 and Hsi-Kung Kuo BMC Ophthalmol. 2019; 19: 87. Published online 2019 Apr 3. doi: 10.1186/s12886-019-1093-2
PMCID: PMC6448235

B-BOX™ Blue Light LED Epi-illuminator
470 nm long wavelength
Improved cloning efficiency
Compact, light-weight, and portable (less than 1 kg)
Adjustable and removable filter plate allows for gel cutting, visualization, and documentation
470 nm long wavelength
Improved cloning efficiency
Compact, light-weight, and portable (less than 1 kg)
Adjustable and removable filter plate allows for gel cutting, visualization, and documentation

ExcelBand™ DNA Ladder series
Sharp bands
Quick reference— enhanced bands
Ready-to-use— premixed with loading dye for direct loading
Stable— room temperature storage over 6 months

FluoroStain™ DNA Fluorescent Staining Dye
Excellent for post staining
Sensitivity up to 0.04 ng DNA
A safe alternative to EtBr
Suitable for blue or UV light
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
我硕士博士期间都在做临床研究(现在还有2年多毕业),如果想在博士期间或者毕业后到国外(特别是好的团队)继续学习临床研究的话,有什么途径,需要往哪方面努力呢?请各位前辈同道指点!
注:本人本硕博均985院校,导师名气不错,平台还挺好的。不过本人不才,还没有文章产出。参与了两个多中心的临床研究,希望接下来一年可以产出一篇
中医临床研究投稿一星期就从初审直接进入终审,这个节奏正常吗?录用几率大吗?
前言:临床研究设计是临床科研工作的重要内容。严谨、科学、合理的临床研究设计才有可能对临床问题的解决有参考意义。临床研究中常用设计方案的特征、使用范围及实施方法等内容是临床研究开展的第一步,但在实际临床研究设计过程中常遇到一些问题或存在不规范情况,尤其是我们的医学研究生和青年医生们,以下结合实例讲解做简要总结。
备注:此PPT为研究生科研培训系列内容,仅供医务工作者及医学生交流使用,请关注后续更多分析,谢谢!
附:
1.《科研培训系列:如何高效检索和获取医学文献》
临床药物试验需要遵守哪些原则呢?我们在药物临床试验中需要遵循三个原则:科学原则、法律法规、伦理原则。
简单来讲,就是说临床药物试验必须要科学合理,必须要符合相关法律法规,必须讲究伦理道德。当药物临床试验的科学性、法规性与伦理性发生矛盾时,我们应把伦理问题摆在首位。为保护咱们受试者的尊严、安全和权益,国家规定从下面几个方面对药物临床试验伦理进行重点审查,包括研究方案的设计与实施、试验的风险与受益、受试者的招募、知情同意书告知的信息、知情同意的过程、受试者的医疗和保护、隐私和保密、涉及弱势群体的研究。
参加临床药物试验有哪些好处呢?
从咱们患者的角度来讲,参加新药研究,可以使患者最早受益于这些新药的治疗,可能获得好的疗效,尤其对于复发难治的患者,目前已经上市的药物没有好的治疗效果时,临床试验新药是首选治疗。参加临床试验,可以使患者经济上受益,临床试验的药物可以免费提供(这些药物一旦上市,往往价格昂贵),参加临床试验的患者可以得到免费的与试验相关的药物及与试验相关的各项检查,因此可减轻患者的经济负担。同时,参加临床试验,可以接受规范的治疗和随访,患者在研究期间获得医院和科室良好的医疗服务,有利于提高疗效。当然,患者和其他受试者参加并配合完成本试验,有可能会对其他患有同样疾病的人的治疗作出重大贡献。
临床药物试验的风险主要有两部分,第一,增加新药不一定增加疗效。第二,可能会有一些既往没有碰到过的不良反应。
大家不要太过顾虑这些风险,因为临床研究有严格的政策管理规定、标准的操作流行,以及良好的全程的质量控制,最大程度的减少风险,保证受试病人的安全。实际上,一个临床试验的实施,是经过了严格的审批程序的。
为了遵循临床药物试验的三大原则,保证试验的合法性、科学性以及最大限度保障患者利益,临床药物试验需要一套复杂且必要的流程。对于临床药物试验的流程,大部分都是研究的申请单位与研究的实际执行单位需要做的工作。对于咱们参加临床药物试验的患者,只需要与相关医务人员做好沟通,签订知情同意书及相关文件后,积极配合医生工作就行了,其中最重要的是遵医嘱按时用药,按时做检查,按时复诊。
病毒性肝炎.pdf(37546.5k)
药物临床研究包括临床试验和生物等效性试验。向左转|向右转
⑴ 躯体症状:眩晕,无力,震颤, 恶心,困倦,皮肤感觉异常,视力模糊。
⑵ 感觉症状:物体的形状扭曲,颜色改变,注意力无法集中,自我感觉听力显著提高,少数情况下会出现感觉错乱(如听到颜色,看到声音等)。
⑶ 精神症状:情绪改变(欣喜,悲伤或易激惹),紧张,时间感扭曲,无法表达自己的想法,人格解体,梦境般的感觉, 视幻觉。
上述症状只是概要性的,致幻剂所产生的效应是因人因时因地而异的,至今仍无法有一个绝对全面的描述。 1938年Albert Hofmann合成了LSD,这是继他致力于麦角碱研究数年来合成的第25个化合物,因此称为LSD-25,以前合成的数个药物已经在临床上使用,包括methergine用于产科止血,hydergine用于治疗偏头痛。开始Hofmann是想合成一个呼吸兴奋剂,但是动物实验发现LSD-25没有呼吸兴奋作用,因此没有对此进行进一步研究。1943年在一次合成LSD-25的实验后,Hofmann有了一次不同寻常的精神体验,他认为这可能是由于实验过程中吸入或接触到了微量的LSD所致,因此于4月19日进行了著名的自体实验,证实250微克LSD确实引起了非常明显的精神效应,且持续数小时。这是人类历史上第一次发现了一种药效如此强大的能够显著改变人的意识的药物[6]。此后,Sandoz公司向全世界许多实验室提供LSD进行研究。基于LSD在精神方面的作用,许多精神学家使用LSD进行精神辅助治疗。整个上世纪五十年代到六十年代中期,全世界发表了超过1000篇临床研究论文,涉及40000多名患者,出版了数十本书,并召开过6次有关致幻剂精神治疗的国际会议,治疗的疾病包括酒瘾,强迫症,儿童自闭症等。还有一些研究涉及晚期癌症患者,发现LSD能够减少患者镇痛药的用量,患者对死亡的恐惧明显减少,在平静中死去。然而,伴随着对致幻剂医疗用途的探索,致幻剂在特定人群中出现了以娱乐为目的的使用,尤其是五十年代西方社会嬉皮士运动的兴起,为以LSD为代表的致幻剂的滥用推波助澜。到了六十年代初,LSD的滥用波及了西方社会的各个阶层,在教会间开始流行,随之而来的是有关因在无医学监督的环境中随意使用致幻剂而死亡的报道。LSD实验还成为探索宗教和神秘体验本质的新动力。研究宗教的学者和哲学家们在讨论是否在LSD迷醉期间常被发现的宗教和神秘体验是真实的,即与自发的神秘宗教启蒙是否是一样的。在这种背景下,各国政府纷纷将LSD列为管制药,宣布持有和使用该药为非法,并不再资助此类医学研究。迫于压力,Sandoz公司也于1965年发表声明,停止提供LSD进行研究。这一系列措施的结果是科学家发现有关致幻剂的研究获得审批以及经费越来越困难,有关前述精神治疗的研究也多无定论。这样,致幻剂临床研究的热潮慢慢退去。整个七十年代初到九十年代末的30年间,仅有零星的使用致幻剂进行精神治疗的报道,也多数是LSD之外新出现而未被管制的药物,如DPT。目前,全世界仅有几个小组在进行致幻剂研究,主要分布在瑞士和美国。最新的一篇论文发表于2006年8月期的psychopharmacology杂志上,通过在教堂是实验数据分析,约翰霍普金斯大学的Roland Griffiths发现致幻剂psilocybin单次使用能够在具有宗教信仰的人产生宗教体验,且对使用者的影响持续长达2个月。这一报道引起极大轰动,杂志主编专门邀请了4名专家对此进行评论,许多国家的媒体对此进行了报道。与此相呼应的是,2006年1月份,在瑞士Albert Hofmann的家乡举办了庆祝Hofmann 100周岁的国际会议,会上Hofmann本人及许多领域内的专家呼吁政府应考虑放开被禁锢了三十年的致幻剂人体研究,以进一步探索致幻剂用于临床精神治疗的可能性。值得注意的是,Griffiths的研究1999年就已开始,其后为获得政府相关部门的审批耗费了大量时间,使得这一研究在6年以后才最终完成并公开发表。欧美国家是否因此会将有关的政策会进行松动,仍是一个未知数。

